The Modification of Indium Tin Oxide with Phosphonic Acids: Mechanism of Binding, Tuning of Surface Properties, and Potential for Use in Organic Electronic Applications

氧化铟锡 有机发光二极管 X射线光电子能谱 表面改性 材料科学 工作职能 氧化物 有机太阳能电池 有机电子学 单层 纳米技术 化学工程 化学 聚合物 图层(电子) 物理化学 复合材料 冶金 晶体管 电压 工程类 物理 量子力学
作者
Peter J. Hotchkiss,Simon C. Jones,Sergio A. Paniagua,Asha Sharma,Bernard Kippelen,Neal R. Armstrong,Seth R. Marder
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:45 (3): 337-346 被引量:329
标识
DOI:10.1021/ar200119g
摘要

Transparent metal oxides, in particular, indium tin oxide (ITO), are critical transparent contact materials for applications in next-generation organic electronics, including organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs). Understanding and controlling the surface properties of ITO allows for the molecular engineering of the ITO–organic interface, resulting in fine control of the interfacial chemistries and electronics. In particular, both surface energy matching and work function compatibility at material interfaces can result in marked improvement in OLED and OPV performance. Although there are numerous ways to change the surface properties of ITO, one of the more successful surface modifications is the use of monolayers based on organic molecules with widely variable end functional groups. Phosphonic acids (PAs) are known to bind strongly to metal oxides and form robust monolayers on many different metal oxide materials. They also demonstrate several advantages over other functionalizing moieties such as silanes or carboxylic acids. Most notably, PAs can be stored in ambient conditions without degradation, and the surface modification procedures are typically robust and easy to employ.This Account focuses on our research studying PA binding to ITO, the tunable properties of the resulting surfaces, and subsequent effects on the performance of organic electronic devices. We have used surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and infrared reflection adsorption spectroscopy (IRRAS) to determine that PAs bind to ITO in a predominantly bidentate fashion (where two of three oxygen atoms from the PA are involved in surface binding). Modification of the functional R-groups on PAs allows us to control and tune the surface energy and work function of the ITO surface. In one study using fluorinated benzyl PAs, we can keep the surface energy of ITO relatively low and constant but tune the surface work function. PA modification of ITO has resulted in materials that are more stable and more compatible with subsequently deposited organic materials, an effective work function that can be tuned by over 1 eV, and energy barriers to hole injection (OLED) or hole-harvesting (OPV) that can be well matched to the frontier orbital energies of the organic active layers, leading to better overall device properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤的无血完成签到,获得积分10
1秒前
2秒前
rookie完成签到,获得积分10
2秒前
2秒前
ni完成签到,获得积分10
3秒前
step_stone给step_stone的求助进行了留言
4秒前
4秒前
荒野星辰发布了新的文献求助10
5秒前
敏感的芷完成签到,获得积分20
5秒前
7秒前
7秒前
8秒前
luoshi应助沐风采纳,获得20
8秒前
安南完成签到,获得积分10
8秒前
香蕉冬云完成签到 ,获得积分10
9秒前
自信安荷发布了新的文献求助200
9秒前
鱼雷发布了新的文献求助10
10秒前
兔子发布了新的文献求助10
10秒前
10秒前
田様应助coffee采纳,获得10
11秒前
11秒前
专注鼠标完成签到,获得积分10
11秒前
LingYing完成签到 ,获得积分10
12秒前
cheche完成签到,获得积分10
13秒前
liushun完成签到,获得积分10
13秒前
caoyy发布了新的文献求助10
13秒前
zzt发布了新的文献求助10
14秒前
16秒前
16秒前
章家炜发布了新的文献求助10
17秒前
脑洞疼应助xfxx采纳,获得10
17秒前
wanci应助茶博士采纳,获得10
17秒前
所所应助YYT采纳,获得10
18秒前
匿名网友完成签到 ,获得积分10
18秒前
雪白雍完成签到,获得积分10
19秒前
maomao完成签到,获得积分10
19秒前
我是笨蛋完成签到 ,获得积分10
21秒前
酷波er应助caoyy采纳,获得10
22秒前
22秒前
Dreamsli发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824