The Modification of Indium Tin Oxide with Phosphonic Acids: Mechanism of Binding, Tuning of Surface Properties, and Potential for Use in Organic Electronic Applications

氧化铟锡 有机发光二极管 X射线光电子能谱 表面改性 材料科学 工作职能 氧化物 有机太阳能电池 有机电子学 单层 纳米技术 化学工程 化学 聚合物 图层(电子) 物理化学 复合材料 冶金 晶体管 电压 工程类 物理 量子力学
作者
Peter J. Hotchkiss,Simon C. Jones,Sergio A. Paniagua,Asha Sharma,Bernard Kippelen,Neal R. Armstrong,Seth R. Marder
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:45 (3): 337-346 被引量:329
标识
DOI:10.1021/ar200119g
摘要

Transparent metal oxides, in particular, indium tin oxide (ITO), are critical transparent contact materials for applications in next-generation organic electronics, including organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs). Understanding and controlling the surface properties of ITO allows for the molecular engineering of the ITO–organic interface, resulting in fine control of the interfacial chemistries and electronics. In particular, both surface energy matching and work function compatibility at material interfaces can result in marked improvement in OLED and OPV performance. Although there are numerous ways to change the surface properties of ITO, one of the more successful surface modifications is the use of monolayers based on organic molecules with widely variable end functional groups. Phosphonic acids (PAs) are known to bind strongly to metal oxides and form robust monolayers on many different metal oxide materials. They also demonstrate several advantages over other functionalizing moieties such as silanes or carboxylic acids. Most notably, PAs can be stored in ambient conditions without degradation, and the surface modification procedures are typically robust and easy to employ.This Account focuses on our research studying PA binding to ITO, the tunable properties of the resulting surfaces, and subsequent effects on the performance of organic electronic devices. We have used surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and infrared reflection adsorption spectroscopy (IRRAS) to determine that PAs bind to ITO in a predominantly bidentate fashion (where two of three oxygen atoms from the PA are involved in surface binding). Modification of the functional R-groups on PAs allows us to control and tune the surface energy and work function of the ITO surface. In one study using fluorinated benzyl PAs, we can keep the surface energy of ITO relatively low and constant but tune the surface work function. PA modification of ITO has resulted in materials that are more stable and more compatible with subsequently deposited organic materials, an effective work function that can be tuned by over 1 eV, and energy barriers to hole injection (OLED) or hole-harvesting (OPV) that can be well matched to the frontier orbital energies of the organic active layers, leading to better overall device properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
真是麻烦发布了新的文献求助10
刚刚
天天快乐应助长卿采纳,获得10
1秒前
1秒前
贝贝拉发布了新的文献求助10
2秒前
2秒前
认真科研发布了新的文献求助10
2秒前
小熊发布了新的文献求助10
2秒前
3秒前
3秒前
霍碧完成签到,获得积分10
3秒前
和尘同光发布了新的文献求助10
4秒前
KY源完成签到,获得积分10
4秒前
4秒前
lunyu完成签到,获得积分10
4秒前
我是老大应助寒冷乐驹采纳,获得10
5秒前
5秒前
坦率初柔发布了新的文献求助10
5秒前
情怀应助quan采纳,获得10
6秒前
田静然完成签到,获得积分20
6秒前
6秒前
Polaris发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
快乐十八发布了新的文献求助20
7秒前
8秒前
诚心尔琴发布了新的文献求助10
8秒前
打打应助LIKE采纳,获得10
8秒前
8秒前
活力的友卉完成签到,获得积分10
10秒前
郁金香发布了新的文献求助10
10秒前
11秒前
任我行发布了新的文献求助10
11秒前
Ava应助是小明啦采纳,获得10
12秒前
bobo发布了新的文献求助10
12秒前
nadeem发布了新的文献求助10
12秒前
跑山猪完成签到,获得积分10
12秒前
12秒前
ajun发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152976
求助须知:如何正确求助?哪些是违规求助? 2804157
关于积分的说明 7857469
捐赠科研通 2461911
什么是DOI,文献DOI怎么找? 1310570
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601788