职位(财务)
欠驱动
控制理论(社会学)
虚拟工作
自由度(物理和化学)
流离失所(心理学)
非线性系统
势能
顺应机制
偏转(物理)
机制(生物学)
工作(物理)
有限元法
刚体
能量最小化
计算机科学
工程类
物理
经典力学
结构工程
机械工程
量子力学
人工智能
经济
心理学
心理治疗师
控制(管理)
财务
作者
Quentin T. Aten,Shannon A. Zirbel,Brian D. Jensen,Larry L. Howell
出处
期刊:Journal of Mechanical Design
日期:2011-06-01
卷期号:133 (6)
被引量:24
摘要
An underactuated or underconstrained compliant mechanism may have a determined equilibrium position because its energy storage elements cause a position of local minimum potential energy. The minimization of potential energy (MinPE) method is a numerical approach to finding the equilibrium position of compliant mechanisms with more degrees of freedom (DOF) than inputs. Given the pseudorigid-body model of a compliant mechanism, the MinPE method finds the equilibrium position by solving a constrained optimization problem: minimize the potential energy stored in the mechanism, subject to the mechanism’s vector loop equation(s) being equal to zero. The MinPE method agrees with the method of virtual work for position and force determination for underactuated 1-DOF and 2-DOF pseudorigid-body models. Experimental force-deflection data are presented for a fully compliant constant-force mechanism. Because the mechanism’s behavior is not adequately modeled using a 1-DOF pseudorigid-body model, a 13-DOF pseudorigid-body model is developed and solved using the MinPE method. The MinPE solution is shown to agree well with nonlinear finite element analysis and experimental force-displacement data.
科研通智能强力驱动
Strongly Powered by AbleSci AI