Nonlinear Model Reduction via Discrete Empirical Interpolation

数学 插值(计算机图形学) 离散化 伽辽金法 应用数学 非线性系统 偏微分方程 颂歌 常微分方程 维数(图论) 还原(数学) 有限差分 数学分析 数学优化 微分方程 计算机科学 几何学 物理 计算机图形学(图像) 量子力学 纯数学 动画
作者
Saifon Chaturantabut,Danny C. Sorensen
出处
期刊:SIAM Journal on Scientific Computing [Society for Industrial and Applied Mathematics]
卷期号:32 (5): 2737-2764 被引量:1685
标识
DOI:10.1137/090766498
摘要

A dimension reduction method called discrete empirical interpolation is proposed and shown to dramatically reduce the computational complexity of the popular proper orthogonal decomposition (POD) method for constructing reduced-order models for time dependent and/or parametrized nonlinear partial differential equations (PDEs). In the presence of a general nonlinearity, the standard POD-Galerkin technique reduces dimension in the sense that far fewer variables are present, but the complexity of evaluating the nonlinear term remains that of the original problem. The original empirical interpolation method (EIM) is a modification of POD that reduces the complexity of evaluating the nonlinear term of the reduced model to a cost proportional to the number of reduced variables obtained by POD. We propose a discrete empirical interpolation method (DEIM), a variant that is suitable for reducing the dimension of systems of ordinary differential equations (ODEs) of a certain type. As presented here, it is applicable to ODEs arising from finite difference discretization of time dependent PDEs and/or parametrically dependent steady state problems. However, the approach extends to arbitrary systems of nonlinear ODEs with minor modification. Our contribution is a greatly simplified description of the EIM in a finite-dimensional setting that possesses an error bound on the quality of approximation. An application of DEIM to a finite difference discretization of the one-dimensional FitzHugh–Nagumo equations is shown to reduce the dimension from 1024 to order 5 variables with negligible error over a long-time integration that fully captures nonlinear limit cycle behavior. We also demonstrate applicability in higher spatial dimensions with similar state space dimension reduction and accuracy results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王宽宽宽完成签到,获得积分10
1秒前
1秒前
科研通AI6应助13nnk采纳,获得10
2秒前
程昌盛完成签到,获得积分10
2秒前
Aprilapple发布了新的文献求助10
2秒前
3秒前
华仔应助一十六采纳,获得10
3秒前
3秒前
完美世界应助王彦林采纳,获得10
3秒前
去玩儿完成签到,获得积分20
4秒前
4秒前
王宽宽宽发布了新的文献求助10
4秒前
lwq发布了新的文献求助10
4秒前
Grace完成签到,获得积分10
5秒前
华仔应助YaHaa采纳,获得10
6秒前
滕可燕发布了新的文献求助10
6秒前
爆米花应助陈甜甜采纳,获得10
7秒前
摆烂小鱼鱼完成签到 ,获得积分10
7秒前
Lucas应助韩麒嘉采纳,获得10
7秒前
7秒前
7秒前
8秒前
Niuniu完成签到,获得积分10
8秒前
裴裴驳回了珏晴应助
8秒前
9秒前
9秒前
9秒前
9秒前
Aprilapple完成签到,获得积分10
9秒前
10秒前
song发布了新的文献求助10
10秒前
兴奋的发卡完成签到 ,获得积分10
11秒前
自觉翠安应助qiuxiali123采纳,获得10
11秒前
13秒前
hezhuyou完成签到,获得积分20
13秒前
飞乐扣完成签到 ,获得积分10
13秒前
buno应助屈昭阳采纳,获得10
13秒前
优美的觅珍完成签到,获得积分20
13秒前
冯佳祥发布了新的文献求助10
13秒前
aa发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836