核希尔伯特再生空间
数学
子空间拓扑
核(代数)
正规化(语言学)
希尔伯特空间
灵敏度(控制系统)
应用数学
插值(计算机图形学)
算法
纯数学
数学分析
人工智能
计算机科学
运动(物理)
电子工程
工程类
作者
Nicolas Durrande,David Ginsbourger,Olivier Roustant,Laurent Carraro
标识
DOI:10.1016/j.jmva.2012.08.016
摘要
Given a reproducing kernel Hilbert space H of real-valued functions and a suitable measure mu over the source space D (subset of R), we decompose H as the sum of a subspace of centered functions for mu and its orthogonal in H. This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the best predictor can be elegantly derived, either in an interpolation or regularization framework. The proposed kernels appear to be particularly convenient for analyzing the e ffect of each (group of) variable(s) and computing sensitivity indices without recursivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI