拉回吸引子
拉回
紧凑空间
吸引子
随机动力系统
动力系统理论
数学
领域(数学分析)
动力系统(定义)
稳定性理论
纯数学
随机紧集
扩展(谓词逻辑)
数学分析
离散数学
线性动力系统
计算机科学
物理
线性系统
非线性系统
程序设计语言
图形
量子力学
随机图
作者
Tomás Caraballo,Grzegorz Łukaszewicz,José Real
标识
DOI:10.1016/j.na.2005.03.111
摘要
First, we introduce the concept of pullback asymptotically compact non-autonomous dynamical system as an extension of the similar concept in the autonomous framework. Our definition is different from that of asymptotic compactness already used in the theory of random and non-autonomous dynamical systems (as developed by Crauel, Flandoli, Kloeden, Schmalfuss, amongst others) which means the existence of a (random or time-dependent) family of compact attracting sets. Next, we prove a result ensuring the existence of a pullback attractor for a non-autonomous dynamical system under the general assumptions of pullback asymptotic compactness and the existence of a pullback absorbing family of sets. This attractor is minimal and, in most practical applications, it is unique. Finally, we illustrate the theory with a 2D Navier–Stokes model in an unbounded domain.
科研通智能强力驱动
Strongly Powered by AbleSci AI