New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice

叶面积指数 归一化差异植被指数 植被(病理学) 增强植被指数 植被指数 环境科学 遥感 反射率 红边 数学 农学 地理 物理 医学 病理 生物 光学 高光谱成像
作者
Fumin Wang,Jingfeng Huang,Yan-Lin Tang,Xiuzhen Wang
出处
期刊:Rice Science [Elsevier]
卷期号:14 (3): 195-203 被引量:297
标识
DOI:10.1016/s1672-6308(07)60027-4
摘要

Leaf area index (LAI) is an important characteristic of land surface vegetation system, and is also a key parameter for the models of global water balancing and carbon circulation. By using the reflectance values of Landsat-5 blue, green and red channels simulated from rice reflectance spectrum, the sensitivities of the bands to LAI were analyzed, and the response and capability to estimate LAI of various NDVIs (normalized difference vegetation indices), which were established by substituting the red band of general NDVI with all possible combinations of red, green and blue bands, were assessed. Finally, the conclusion was tested by rice data at different conditions. The sensitivities of red, green and blue bands to LAI were different under various conditions. When LAI was less than 3, red and blue bands were more sensitive to LAI. Though green band in the circumstances was less sensitive to LAI than red and blue bands, it was sensitive to LAI in a wider range. When the vegetation indices were constituted by all kinds of combinations of red, green and blue bands, the premise for making the sensitivity of these vegetation indices to LAI be meaningful was that the value of one of the combinations was greater than 0.024, i.e. visible reflectance (VIS)>0.024. Otherwise, the vegetation indices would be saturated, resulting in lower estimation accuracy of LAI. Comparison on the capabilities of the vegetation indices derived from all kinds of combinations of red, green and blue bands to LAI estimation showed that GNDVI (Green NDVI) and GBNDVI (Green-Blue NDVI) had the best relations with LAI. The capabilities of GNDVI and GBNDVI to LAI estimation were tested under different circumstances, and the same result was acquired. It suggested that GNDVI and GBNDVI performed better to predict LAI than the conventional NDVI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等风来发布了新的文献求助10
刚刚
1秒前
毛豆应助大宝慧采纳,获得10
5秒前
天天快乐应助nenoaowu采纳,获得10
6秒前
空心菜公主完成签到,获得积分10
6秒前
Drcai完成签到,获得积分10
8秒前
波bo888发布了新的文献求助10
9秒前
10秒前
好好学习完成签到,获得积分10
11秒前
12秒前
乐乐应助动听的翠绿采纳,获得10
13秒前
小马甲应助ky采纳,获得10
13秒前
13秒前
香蕉觅云应助zhenghangbin采纳,获得10
14秒前
14秒前
Hsu完成签到,获得积分10
14秒前
江峰应助11111采纳,获得10
15秒前
研友_VZG7GZ应助波bo888采纳,获得10
16秒前
17秒前
香蕉觅云应助Hsu采纳,获得10
20秒前
小白发布了新的文献求助10
20秒前
黑夜做着白日梦应助fzzf采纳,获得10
21秒前
22秒前
23秒前
23秒前
白蕲关注了科研通微信公众号
23秒前
慕青应助幽默不愁采纳,获得10
24秒前
大模型应助幽默不愁采纳,获得10
24秒前
大个应助幽默不愁采纳,获得10
24秒前
无花果应助幽默不愁采纳,获得10
24秒前
25秒前
rgaerva应助悬铃木采纳,获得10
25秒前
25秒前
26秒前
下一块蛋糕完成签到 ,获得积分10
27秒前
Xander发布了新的文献求助10
28秒前
29秒前
圆圈儿发布了新的文献求助10
29秒前
是美羊羊完成签到,获得积分10
29秒前
芝士猞猁完成签到,获得积分10
30秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475635
求助须知:如何正确求助?哪些是违规求助? 3067483
关于积分的说明 9104253
捐赠科研通 2758983
什么是DOI,文献DOI怎么找? 1513845
邀请新用户注册赠送积分活动 699843
科研通“疑难数据库(出版商)”最低求助积分说明 699197