Abstract In Weiterentwicklung früherer Theorien von J. und F. Perrin und klassischphysikalischer Überlegungen des Verfassers wird eine quantenmechanische Behandlung des Übergangs von Elektronenanregungsenergie zwischen gleichartigen Molekülen in Lösung gegeben. Der kritische Molekülabstand, unterhalb dessen der übergang während der Anregungsdauer stattfindet, läßt sich aus den Absorptions‐ und Fluoreszenzspektren und der Anregungsdauer der Moleküle berechnen. Für Fluorescein und Chlorophyll a ergeben sich Werte von 50 bzw. 80 ÅE, entsprechend den mittleren Molekülabständen in Lösungen von 3,2 · 10 −3 bzw. 7,7 · 10 −4 Molen/Liter. Für die Bereiche oberhalb und unterhalb der kritischen Konzentration werden Formeln zur Berechnung der Energieabwanderung vom Primärmolekül angegeben, die mit den vorliegenden Messungen der Konzentrationsdepolarisation der Fluoreszenz gut übereinstimmen. Die Anwendung auf analoge Energiewanderungsprobleme in Molekülkristallen und im Assimilationsapparat der Pflanze wird diskutiert.