人工智能
计算机科学
稳健性(进化)
模式识别(心理学)
Gabor滤波器
计算机视觉
分割
特征提取
视网膜
图像分割
支持向量机
特征向量
方向(向量空间)
特征(语言学)
数学
基因
生物化学
哲学
语言学
化学
几何学
作者
Muhammad Moazam Fraz,Paolo Remagnino,Andreas Hoppe,Bunyarit Uyyanonvara,Alicja R. Rudnicka,Christopher G. Owen,Sarah Barman
出处
期刊:IEEE Transactions on Biomedical Engineering
[Institute of Electrical and Electronics Engineers]
日期:2012-06-22
卷期号:59 (9): 2538-2548
被引量:829
标识
DOI:10.1109/tbme.2012.2205687
摘要
This paper presents a new supervised method for segmentation of blood vessels in retinal photographs. This method uses an ensemble system of bagged and boosted decision trees and utilizes a feature vector based on the orientation analysis of gradient vector field, morphological transformation, line strength measures, and Gabor filter responses. The feature vector encodes information to handle the healthy as well as the pathological retinal image. The method is evaluated on the publicly available DRIVE and STARE databases, frequently used for this purpose and also on a new public retinal vessel reference dataset CHASE_DB1 which is a subset of retinal images of multiethnic children from the Child Heart and Health Study in England (CHASE) dataset. The performance of the ensemble system is evaluated in detail and the incurred accuracy, speed, robustness, and simplicity make the algorithm a suitable tool for automated retinal image analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI