微流控
小泡
电穿孔
背景(考古学)
化学
纳米技术
材料科学
生物物理学
膜
生物化学
古生物学
生物
基因
作者
Eunice S. Lee,David Robinson,Judith L. Rognlien,C. K. Harnett,Blake A. Simmons,CG Ellis,Rafael V. Davalos
标识
DOI:10.1016/j.bioelechem.2005.12.002
摘要
We present a new way to transport and handle picoliter volumes of analytes in a microfluidic context through electrically monitored electroporation of 10–25 μm vesicles. In this method, giant vesicles are used to isolate analytes in a microfluidic environment. Once encapsulated inside a vesicle, contents will not diffuse and become diluted when exposed to pressure-driven flow. Two vesicle compositions have been developed that are robust enough to withstand electrical and mechanical manipulation in a microfluidic context. These vesicles can be guided and trapped, with controllable transfer of material into or out of their confined environment. Through electroporation, vesicles can serve as containers that can be opened when mixing and diffusion are desired, and closed during transport and analysis. Both vesicle compositions contain lecithin, an ethoxylated phospholipid, and a polyelectrolyte. Their performance is compared using a prototype microfluidic device and a simple circuit model. It was observed that the energy density threshold required to induce breakdown was statistically equivalent between compositions, 10.2 ± 5.0 mJ/m2 for the first composition and 10.5 ± 1.8 mJ/m2 for the second. This work demonstrates the feasibility of using giant, robust vesicles with microfluidic electroporation technology to manipulate picoliter volumes on-chip.
科研通智能强力驱动
Strongly Powered by AbleSci AI