白蛋白
医学
透析
尿素
血液透析
肾功能
内科学
色谱法
生物化学
化学
出处
期刊:Contributions To Nephrology
日期:2011-01-01
卷期号:: 1-10
被引量:25
摘要
Global knowledge of the molecular target of uremic toxins (UTs) was significantly different in the 1980s than it is now. In 1971, Babb et al. hypothesized that UTs such as neurotoxin existed in mid-sized molecules ranging from 300 to 3,000 Da. In the 1980s, larger molecular weight substances > 5,000 Da were targeted for removal, as well as small and medium size toxins in Japan, while urea was considered a surrogate marker of UTs, and Kt/V for urea was used as a measure of dialysis dose in the USA. In Japan, albumin-bound toxins in addition to low-molecular-weight proteins were targeted for removal as glomerular filtration in the normal kidney. As binding capacity of albumin is significantly lowered and, on the other hand, the α-helical content of albumin also lowered in uremic patients because of binding of UTs to albumin, a small amount of albumin should be removed to stimulate the synthesis of new albumin. KF101 C-2 (EVAL) used as a high-performance dialysis membrane (HPM) at the first step, in which approximately 7 g of albumin is removed per dialysis session. It resulted in lowered plasma albumin levels in hemodialysis patients, although accumulated levels of low-molecular-weight proteins were significantly lowered. Therefore, the Japanese Society of Dialysis Therapy has recommended limitation of albumin removal to < 3 g/session by the second generation of HPMs. Many different HPMs have been developed since the Japanese Society of HPM was first organized in 1985. Approximately 98% of the dialyzers used in Japan employ HPMs. New technology is required to suppress fouling on the surface and in the pores of HPMs. This would maintain permeation of inflammatory cytokines during dialysis sessions.
科研通智能强力驱动
Strongly Powered by AbleSci AI