Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts

Hagen-Poiseuille方程 格子Boltzmann方法 机械 物理 压缩性 不可压缩流 统计物理学 经典力学 流量(数学)
作者
Y. Q. Zu,Suqin He
出处
期刊:Physical Review E [American Physical Society]
卷期号:87 (4) 被引量:223
标识
DOI:10.1103/physreve.87.043301
摘要

A lattice Boltzmann model (LBM) is proposed based on the phase-field theory to simulate incompressible binary fluids with density and viscosity contrasts. Unlike many existing diffuse interface models which are limited to density matched binary fluids, the proposed model is capable of dealing with binary fluids with moderate density ratios. A new strategy for projecting the phase field to the viscosity field is proposed on the basis of the continuity of viscosity flux. The new LBM utilizes two lattice Boltzmann equations (LBEs): one for the interface tracking and the other for solving the hydrodynamic properties. The LBE for interface tracking can recover the Chan-Hilliard equation without any additional terms; while the LBE for hydrodynamic properties can recover the exact form of the divergence-free incompressible Navier-Stokes equations avoiding spurious interfacial forces. A series of 2D and 3D benchmark tests have been conducted for validation, which include a rigid-body rotation, stationary and moving droplets, a spinodal decomposition, a buoyancy-driven bubbly flow, a layered Poiseuille flow, and the Rayleigh-Taylor instability. It is shown that the proposed method can track the interface with high accuracy and stability and can significantly and systematically reduce the parasitic current across the interface. Comparisons with momentum-based models indicate that the newly proposed velocity-based model can better satisfy the incompressible condition in the flow fields, and eliminate or reduce the velocity fluctuations in the higher-pressure-gradient region and, therefore, achieve a better numerical stability. In addition, the test of a layered Poiseuille flow demonstrates that the proposed scheme for mixture viscosity performs significantly better than the traditional mixture viscosity methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanyan完成签到,获得积分10
刚刚
无心的荆完成签到,获得积分10
刚刚
轻松凌柏发布了新的文献求助10
刚刚
徐cc完成签到 ,获得积分10
1秒前
firewood完成签到,获得积分10
2秒前
风趣的语蕊完成签到,获得积分10
2秒前
尤狸子发布了新的文献求助30
2秒前
思源应助澜冰采纳,获得10
2秒前
隐形曼青应助汤圆有奶瓶采纳,获得10
3秒前
明亮的青旋完成签到 ,获得积分10
3秒前
西海岸的风完成签到,获得积分10
3秒前
古丁完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
嗨害完成签到,获得积分10
6秒前
浮游应助能干的初瑶采纳,获得10
6秒前
崔懿龍完成签到,获得积分10
6秒前
孟一天完成签到,获得积分10
7秒前
善学以致用应助重要易槐采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
SciGPT应助得意黑采纳,获得10
8秒前
老实凝蕊完成签到,获得积分10
8秒前
8秒前
9秒前
巴旦木发布了新的文献求助10
9秒前
可爱的函函应助追寻音响采纳,获得10
9秒前
Wind应助ZRZR采纳,获得10
9秒前
9秒前
科研通AI2S应助空凌采纳,获得10
10秒前
情怀应助小鱼仔采纳,获得10
10秒前
kirazou完成签到,获得积分10
10秒前
杨旭发布了新的文献求助10
10秒前
11秒前
liu完成签到,获得积分10
12秒前
12秒前
困得晕乎乎完成签到,获得积分10
12秒前
小波完成签到,获得积分10
12秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444