Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts

Hagen-Poiseuille方程 格子Boltzmann方法 机械 物理 压缩性 不可压缩流 统计物理学 经典力学 流量(数学)
作者
Y. Q. Zu,Suqin He
出处
期刊:Physical Review E [American Physical Society]
卷期号:87 (4) 被引量:223
标识
DOI:10.1103/physreve.87.043301
摘要

A lattice Boltzmann model (LBM) is proposed based on the phase-field theory to simulate incompressible binary fluids with density and viscosity contrasts. Unlike many existing diffuse interface models which are limited to density matched binary fluids, the proposed model is capable of dealing with binary fluids with moderate density ratios. A new strategy for projecting the phase field to the viscosity field is proposed on the basis of the continuity of viscosity flux. The new LBM utilizes two lattice Boltzmann equations (LBEs): one for the interface tracking and the other for solving the hydrodynamic properties. The LBE for interface tracking can recover the Chan-Hilliard equation without any additional terms; while the LBE for hydrodynamic properties can recover the exact form of the divergence-free incompressible Navier-Stokes equations avoiding spurious interfacial forces. A series of 2D and 3D benchmark tests have been conducted for validation, which include a rigid-body rotation, stationary and moving droplets, a spinodal decomposition, a buoyancy-driven bubbly flow, a layered Poiseuille flow, and the Rayleigh-Taylor instability. It is shown that the proposed method can track the interface with high accuracy and stability and can significantly and systematically reduce the parasitic current across the interface. Comparisons with momentum-based models indicate that the newly proposed velocity-based model can better satisfy the incompressible condition in the flow fields, and eliminate or reduce the velocity fluctuations in the higher-pressure-gradient region and, therefore, achieve a better numerical stability. In addition, the test of a layered Poiseuille flow demonstrates that the proposed scheme for mixture viscosity performs significantly better than the traditional mixture viscosity methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星探险发布了新的文献求助10
刚刚
思睿拜发布了新的文献求助10
1秒前
隐形曼青应助清风采纳,获得10
3秒前
U9A发布了新的文献求助10
4秒前
Avvei完成签到,获得积分10
5秒前
Dan完成签到,获得积分10
5秒前
李爱国应助思睿拜采纳,获得10
6秒前
化学位移值完成签到 ,获得积分10
6秒前
6秒前
甜橙汁完成签到,获得积分10
8秒前
9秒前
屈懿轩完成签到,获得积分10
10秒前
cttc完成签到,获得积分10
10秒前
15秒前
青衣北风发布了新的文献求助10
15秒前
16秒前
17秒前
Laneyliu发布了新的文献求助10
17秒前
18秒前
小二郎应助shinn采纳,获得10
18秒前
18秒前
科研通AI5应助一朵采纳,获得10
19秒前
暮雪残梅完成签到 ,获得积分10
19秒前
爱啊发布了新的文献求助10
21秒前
糖炒栗子发布了新的文献求助10
22秒前
Carlo完成签到,获得积分10
22秒前
22秒前
直率月亮发布了新的文献求助10
23秒前
武雨寒发布了新的文献求助10
23秒前
清风发布了新的文献求助10
24秒前
I Think发布了新的文献求助10
26秒前
糖炒栗子完成签到,获得积分10
28秒前
wiwi发布了新的文献求助30
28秒前
30秒前
科研小猫关注了科研通微信公众号
31秒前
隐形曼青应助马琛尧采纳,获得10
32秒前
Laneyliu完成签到,获得积分10
33秒前
yx_cheng应助韩凡采纳,获得10
33秒前
拿铁小笼包完成签到,获得积分10
33秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967482
求助须知:如何正确求助?哪些是违规求助? 3512759
关于积分的说明 11164944
捐赠科研通 3247740
什么是DOI,文献DOI怎么找? 1794021
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517