ML359, a Small Molecule Inhibitor of Protein Disulfide Isomerase That Prevents Thrombus Formation and Inhibits Oxidoreductase but Not Transnitrosylase Activity

氧化还原酶 蛋白质二硫键异构酶 化学 小分子 变构调节 生物化学 半胱氨酸 立体化学 异构酶
作者
Pavan K. Bendapudi,Roelof H. Bekendam,Lin Lin,Mingdong Huang,Bruce Furie,Robert Flaumenhaft
出处
期刊:Blood [American Society of Hematology]
卷期号:124 (21): 2880-2880 被引量:2
标识
DOI:10.1182/blood.v124.21.2880.2880
摘要

Abstract Vascular thiol isomerases comprise a family of enzymes including protein disulfide isomerase (PDI), ERp5, and ERp57 that are important in the process of thrombus formation. PDI is secreted at sites of vascular injury, and antibody-mediated PDI inhibition prevents thrombus formation in a mouse laser injury model. Our group has previously reported on the discovery of the small molecule PDI inhibitors quercetin-3-rutinoside and ML359. Identified as part of a high-throughput screen, ML359 is a second-generation PDI inhibitor that selectively blocks PDI oxidoreductase activity with approximately ten-fold the potency of quercetin-3-rutinoside. To better understand the mechanism of allosteric modulation of PDI by small molecules, we evaluated the association of ML359 with isolated domains of PDI, determined the effects of ML359 on a variety of PDI functions, and compared the activity of ML359 to that of quercetin-3-rutinoside. PDI is composed of four thioredoxin-like domains and an x-linker region in the sequence a-b-b’-x-a’. Major substrate binding is thought to occur in the b-b’ region while the a and a’ domains contain catalytically active cysteine motifs (CGHC) that mediate the oxidoreducase, nitrosylase, and thiol isomerase functions of PDI. In order to identify potential binding sites of ML359 on PDI, we constructed and expressed the domain fragments a, ab, abb’, b’xa’, and a’. These fragments were tested in the presence of 10 µM ML359 using an insulin turbidometric assay that measures the oxidoreductase activity of PDI. ML359 demonstrated full inhibition of oxidoreductase activity when full-length PDI and the b’xa’ fragment were used whereas no inhibition was observed with the other fragments assayed. These results are consistent with docking studies showing that ML359 likely binds in a pocket formed at the b’x interface. In contrast, when the same experiment was performed in the presence of 30 µM of quercetin-3-rutinoside, inhibition was only noted with full-length PDI and the abb’ and b’xa’ fragments, suggesting that binding was dependent on the b’ and not the x-linker region. To determine if ML359 has differential effects on the oxidoreductase and nitrosylase functions of PDI, we utilized a platelet-based assay in which fluorescence intensity stemming from the NO-sensitive intracellular dye DAF-FM was measured as an indicator of PDI-mediated translocation of NO from the extracellular surface into the cytosol (transnitrosylation). While quercetin-3-rutinoside potently inhibited PDI-mediated transnitrosylation activity, ML359 had no effect. These results are consistent with the idea that the transnitrosylase and oxidoreducase functions of PDI are separable and inhibition of either is specific to the small molecule used. We evaluated the ability of ML359 to inhibit thrombosis in a mouse laser injury model. Intravital microscopy was used to follow thrombus formation in mouse cremaster arterioles after laser-induced vascular injury. Infusion of ML359 resulted in inhibition of thrombus formation, in contrast to thrombosis seen after infusion of vehicle alone. In summary, ML359 is a second generation small molecule inhibitor of PDI that likely binds at the b’x interface of the enzyme. Furthermore, ML359 is able to selectively inhibit PDI oxidoreductase activity without affecting transnitrosylase activity. ML359 may prove a useful molecular probe to better understand the different functions of PDI relative to thrombus formation in vivo. Disclosures No relevant conflicts of interest to declare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李健应助lightstop采纳,获得10
刚刚
1秒前
2秒前
2秒前
2秒前
Jasper应助yy采纳,获得10
3秒前
小蘑菇应助pu采纳,获得10
3秒前
福福完成签到,获得积分10
3秒前
庐州月发布了新的文献求助10
4秒前
清爽雨南发布了新的文献求助10
4秒前
飘逸问薇发布了新的文献求助30
5秒前
张姚发布了新的文献求助10
6秒前
aa完成签到,获得积分10
6秒前
华仔应助lalala采纳,获得10
6秒前
7秒前
resluo发布了新的文献求助10
7秒前
科研通AI2S应助wang1采纳,获得10
7秒前
COC发布了新的文献求助10
7秒前
仇夜羽完成签到 ,获得积分10
8秒前
十七完成签到,获得积分10
8秒前
8秒前
8秒前
slim完成签到,获得积分10
8秒前
10秒前
SciGPT应助全若之采纳,获得10
11秒前
11秒前
jiangjiang关注了科研通微信公众号
11秒前
DYH发布了新的文献求助10
12秒前
13秒前
Ava应助满意的汝燕采纳,获得10
13秒前
科研通AI2S应助wang1采纳,获得10
14秒前
14秒前
刘耳朵发布了新的文献求助20
15秒前
15秒前
大模型应助Felicity采纳,获得10
16秒前
resluo完成签到,获得积分10
17秒前
开心的大开完成签到 ,获得积分10
17秒前
17秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128715
求助须知:如何正确求助?哪些是违规求助? 2779520
关于积分的说明 7743611
捐赠科研通 2434839
什么是DOI,文献DOI怎么找? 1293652
科研通“疑难数据库(出版商)”最低求助积分说明 623388
版权声明 600514