作者
David J. Lederer,S. C. Bell,Richard D. Branson,James D. Chalmers,Rachel D. Marshall,David M. Maslove,David Ost,Naresh M. Punjabi,Michael Schatz,Alan R Smyth,Paul W. Stewart,Samy Suissa,Alex A. Adjei,Cezmi A. Akdiş,Élie Azoulay,Jan Bakker,Zuhair K. Ballas,Philip G. Bardin,Esther Barreiro,Rinaldo Bellomo,Jonathan A. Bernstein,Vito Brusasco,Timothy G. Buchman,Sudhansu Chokroverty,Nancy A. Collop,James D. Crapo,Dominic A. Fitzgerald,Lauren Hale,Nicholas Hart,Felix J.F. Herth,Theodore J. Iwashyna,Gisli Jenkins,Martin Kolb,Guy B. Marks,Peter Mazzone,J. Randall Moorman,Thomas M. Murphy,Terry L. Noah,Paul N. Reynolds,Dieter Riemann,Richard Russell,Aziz Sheikh,Giovanni Sotgiu,Erik R. Swenson,Rhonda Szczesniak,Ronald Szymusiak,Jean Louis Teboul,Jean‐Louis Vincent
摘要
Key Principle #1: Causal inference requires careful consideration of confounding d Preferred variable selection methods 1. Historical confounder definition with purposeful variable selection 2. Causal models using directed acyclic graphs d Variable selection methods that do not adequately control for confounding 3. P value-or model-based methods 4. Methods based on b-coefficient changes 5. Selection of variables to identify "independent predictors" d Do not present all of the effect estimates from a model designed to test a single causal association (Table 2 fallacy) Key Principle #2: Interpretation of results should not rely on the magnitude of P values d P values should rarely be presented in isolation d Present effect estimates and measures of variability with or without P values d Variability around effect estimates should inform conclusions d A conclusion of "no association" should require exclusion of meaningful effect sizes d Avoid the word "significant" in favor of more specific language.Key Principle #3: Results should be presented in a granular and transparent fashion d Use the STROBE statement and checklist d Model tables after the STROBE explanation and elaboration document (30) d Visual presentation of quantitative results B Present individual data points when possible B Avoid excessive lines, text, grids, and abbreviations B Continuous data should not be presented in bar charts with standard error bars ("plunger plots") B Use color-blind-friendly palettes