亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Densely Based Multi-Scale and Multi-Modal Fully Convolutional Networks for High-Resolution Remote-Sensing Image Semantic Segmentation

计算机科学 人工智能 分割 卷积神经网络 模式识别(心理学) 图像分割 水准点(测量) 遥感 卷积(计算机科学) 人工神经网络 大地测量学 地质学 地理
作者
Peng Cheng,Yangyang Li,Licheng Jiao,Yanqiao Chen,Ronghua Shang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (8): 2612-2626 被引量:85
标识
DOI:10.1109/jstars.2019.2906387
摘要

Automatic and accurate semantic segmentation from high-resolution remote-sensing images plays an important role in the field of aerial images analysis. The task of dense semantic segmentation requires that semantic labels be assigned to each pixel in the image. Recently, convolutional neural networks (CNNs) have proven to be powerful tools for image classification, and they have been adopted in the remote-sensing community. But many limitations still exist when modern CNN architectures are directly applied to remote-sensing images, such as gradient explosion when the depth of the network increases, over-fitting with limited labeled remote-sensing data, and special differences between remote-sensing images and natural images. In this paper, we present a novel architecture that combines the thought of dense connection and fully convolutional networks, referred as DFCN, to automatically provide fine-grained semantic segmentation maps. In addition, we improve DFCN with multi-scale filters to widen the network and to increase the richness and diversity of extracted information, making the network more powerful and expressive than the naive convolution layer. Furthermore, we investigate a multi-modal network that incorporates digital surface models (DSMs) into a DFCN structure, and then we propose dual-path densely convolutional networks where the encoder consists of two paths that, respectively, extract features from spectral data and DSMs data and then fuse them. Finally, through conducting comprehensive experimental evaluations on two remote sensing benchmark datasets, we test our proposed models and compare them with other deep networks. The results demonstrate the effectiveness of proposed approaches; they can achieve competitive performance compared with the current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
35秒前
Archers完成签到 ,获得积分10
39秒前
1分钟前
爱心完成签到 ,获得积分10
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得150
1分钟前
2分钟前
2分钟前
2分钟前
辣姜发布了新的文献求助10
2分钟前
2分钟前
2分钟前
榜一大哥的负担完成签到 ,获得积分10
2分钟前
back you up完成签到,获得积分10
2分钟前
edc关闭了edc文献求助
3分钟前
3分钟前
3分钟前
开心叫兽完成签到 ,获得积分10
3分钟前
Crisp发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
藤椒辣鱼应助科研通管家采纳,获得10
3分钟前
英姑应助科研通管家采纳,获得10
3分钟前
yunxiao完成签到 ,获得积分10
3分钟前
辣姜完成签到,获得积分10
4分钟前
4分钟前
lanxinge完成签到 ,获得积分10
4分钟前
善学以致用应助hxy采纳,获得10
4分钟前
4分钟前
4分钟前
hxy完成签到,获得积分10
4分钟前
hxy发布了新的文献求助10
4分钟前
4分钟前
猴子请来的救兵完成签到 ,获得积分10
5分钟前
藤椒辣鱼应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
edc发布了新的文献求助10
5分钟前
edc关闭了edc文献求助
6分钟前
7分钟前
星际舟完成签到,获得积分10
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445140
求助须知:如何正确求助?哪些是违规求助? 3041131
关于积分的说明 8983977
捐赠科研通 2729747
什么是DOI,文献DOI怎么找? 1497141
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689697