Densely Based Multi-Scale and Multi-Modal Fully Convolutional Networks for High-Resolution Remote-Sensing Image Semantic Segmentation

计算机科学 人工智能 分割 卷积神经网络 模式识别(心理学) 图像分割 水准点(测量) 遥感 卷积(计算机科学) 人工神经网络 大地测量学 地质学 地理
作者
Peng Cheng,Yangyang Li,Licheng Jiao,Yanqiao Chen,Ronghua Shang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (8): 2612-2626 被引量:85
标识
DOI:10.1109/jstars.2019.2906387
摘要

Automatic and accurate semantic segmentation from high-resolution remote-sensing images plays an important role in the field of aerial images analysis. The task of dense semantic segmentation requires that semantic labels be assigned to each pixel in the image. Recently, convolutional neural networks (CNNs) have proven to be powerful tools for image classification, and they have been adopted in the remote-sensing community. But many limitations still exist when modern CNN architectures are directly applied to remote-sensing images, such as gradient explosion when the depth of the network increases, over-fitting with limited labeled remote-sensing data, and special differences between remote-sensing images and natural images. In this paper, we present a novel architecture that combines the thought of dense connection and fully convolutional networks, referred as DFCN, to automatically provide fine-grained semantic segmentation maps. In addition, we improve DFCN with multi-scale filters to widen the network and to increase the richness and diversity of extracted information, making the network more powerful and expressive than the naive convolution layer. Furthermore, we investigate a multi-modal network that incorporates digital surface models (DSMs) into a DFCN structure, and then we propose dual-path densely convolutional networks where the encoder consists of two paths that, respectively, extract features from spectral data and DSMs data and then fuse them. Finally, through conducting comprehensive experimental evaluations on two remote sensing benchmark datasets, we test our proposed models and compare them with other deep networks. The results demonstrate the effectiveness of proposed approaches; they can achieve competitive performance compared with the current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
carly完成签到 ,获得积分10
1秒前
2秒前
vicky完成签到,获得积分10
3秒前
三石完成签到,获得积分10
5秒前
大模型应助安好采纳,获得10
6秒前
7秒前
星辰完成签到 ,获得积分10
7秒前
王青青发布了新的文献求助10
8秒前
一顿吃不饱完成签到,获得积分0
8秒前
可靠的书本完成签到,获得积分10
9秒前
鲨鱼也蛀牙完成签到,获得积分10
10秒前
ricown完成签到,获得积分10
10秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
11秒前
chiazy完成签到,获得积分10
12秒前
12秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
xzy998应助科研通管家采纳,获得10
14秒前
Akjan应助科研通管家采纳,获得10
14秒前
小王同学完成签到,获得积分10
14秒前
小花完成签到 ,获得积分10
15秒前
文心同学完成签到,获得积分0
16秒前
17秒前
缥缈若翠完成签到,获得积分10
18秒前
安好发布了新的文献求助10
19秒前
淡淡阁完成签到 ,获得积分10
20秒前
萌萌雨完成签到,获得积分10
21秒前
22秒前
陈老太完成签到 ,获得积分10
24秒前
小斌完成签到,获得积分10
25秒前
O_O完成签到,获得积分10
27秒前
Liang完成签到,获得积分10
30秒前
lii完成签到,获得积分10
31秒前
一杯沧海完成签到 ,获得积分10
31秒前
桢桢树完成签到,获得积分10
32秒前
cheng完成签到,获得积分10
34秒前
34秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015