Densely Based Multi-Scale and Multi-Modal Fully Convolutional Networks for High-Resolution Remote-Sensing Image Semantic Segmentation

计算机科学 人工智能 分割 卷积神经网络 模式识别(心理学) 图像分割 水准点(测量) 遥感 卷积(计算机科学) 人工神经网络 大地测量学 地质学 地理
作者
Peng Cheng,Yangyang Li,Licheng Jiao,Yanqiao Chen,Ronghua Shang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (8): 2612-2626 被引量:85
标识
DOI:10.1109/jstars.2019.2906387
摘要

Automatic and accurate semantic segmentation from high-resolution remote-sensing images plays an important role in the field of aerial images analysis. The task of dense semantic segmentation requires that semantic labels be assigned to each pixel in the image. Recently, convolutional neural networks (CNNs) have proven to be powerful tools for image classification, and they have been adopted in the remote-sensing community. But many limitations still exist when modern CNN architectures are directly applied to remote-sensing images, such as gradient explosion when the depth of the network increases, over-fitting with limited labeled remote-sensing data, and special differences between remote-sensing images and natural images. In this paper, we present a novel architecture that combines the thought of dense connection and fully convolutional networks, referred as DFCN, to automatically provide fine-grained semantic segmentation maps. In addition, we improve DFCN with multi-scale filters to widen the network and to increase the richness and diversity of extracted information, making the network more powerful and expressive than the naive convolution layer. Furthermore, we investigate a multi-modal network that incorporates digital surface models (DSMs) into a DFCN structure, and then we propose dual-path densely convolutional networks where the encoder consists of two paths that, respectively, extract features from spectral data and DSMs data and then fuse them. Finally, through conducting comprehensive experimental evaluations on two remote sensing benchmark datasets, we test our proposed models and compare them with other deep networks. The results demonstrate the effectiveness of proposed approaches; they can achieve competitive performance compared with the current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
a龙完成签到,获得积分10
1秒前
ZRBY完成签到,获得积分10
3秒前
侃侃完成签到,获得积分10
3秒前
111完成签到,获得积分10
3秒前
ws556发布了新的文献求助10
3秒前
李_小_八完成签到,获得积分10
3秒前
4秒前
4秒前
duckspy完成签到 ,获得积分10
5秒前
三叶草完成签到,获得积分10
6秒前
大王具足虫完成签到,获得积分10
6秒前
lzl008完成签到 ,获得积分10
7秒前
我是老大应助自信的冬日采纳,获得10
7秒前
尼古拉斯大唯完成签到,获得积分10
7秒前
YANA完成签到,获得积分10
8秒前
Star完成签到,获得积分10
8秒前
8秒前
9秒前
无名发布了新的文献求助10
10秒前
pophoo完成签到,获得积分10
10秒前
yuan完成签到 ,获得积分10
10秒前
10秒前
hzhang完成签到,获得积分10
11秒前
喜洋洋完成签到,获得积分20
11秒前
LEE123完成签到,获得积分10
11秒前
piglet发布了新的文献求助10
11秒前
11秒前
祖乐松完成签到,获得积分10
12秒前
lily336699完成签到,获得积分10
12秒前
lzk完成签到,获得积分10
12秒前
13秒前
luluyuan2010完成签到,获得积分10
13秒前
dxz完成签到,获得积分10
14秒前
喜悦香薇完成签到,获得积分10
14秒前
bkagyin应助秀丽笑容采纳,获得10
14秒前
无患子关注了科研通微信公众号
14秒前
guozi完成签到,获得积分10
14秒前
花火易逝完成签到,获得积分10
15秒前
GD88完成签到,获得积分10
15秒前
AimeeLau发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890