Densely Based Multi-Scale and Multi-Modal Fully Convolutional Networks for High-Resolution Remote-Sensing Image Semantic Segmentation

计算机科学 人工智能 分割 卷积神经网络 模式识别(心理学) 图像分割 水准点(测量) 遥感 卷积(计算机科学) 人工神经网络 大地测量学 地质学 地理
作者
Peng Cheng,Yangyang Li,Licheng Jiao,Yanqiao Chen,Ronghua Shang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (8): 2612-2626 被引量:85
标识
DOI:10.1109/jstars.2019.2906387
摘要

Automatic and accurate semantic segmentation from high-resolution remote-sensing images plays an important role in the field of aerial images analysis. The task of dense semantic segmentation requires that semantic labels be assigned to each pixel in the image. Recently, convolutional neural networks (CNNs) have proven to be powerful tools for image classification, and they have been adopted in the remote-sensing community. But many limitations still exist when modern CNN architectures are directly applied to remote-sensing images, such as gradient explosion when the depth of the network increases, over-fitting with limited labeled remote-sensing data, and special differences between remote-sensing images and natural images. In this paper, we present a novel architecture that combines the thought of dense connection and fully convolutional networks, referred as DFCN, to automatically provide fine-grained semantic segmentation maps. In addition, we improve DFCN with multi-scale filters to widen the network and to increase the richness and diversity of extracted information, making the network more powerful and expressive than the naive convolution layer. Furthermore, we investigate a multi-modal network that incorporates digital surface models (DSMs) into a DFCN structure, and then we propose dual-path densely convolutional networks where the encoder consists of two paths that, respectively, extract features from spectral data and DSMs data and then fuse them. Finally, through conducting comprehensive experimental evaluations on two remote sensing benchmark datasets, we test our proposed models and compare them with other deep networks. The results demonstrate the effectiveness of proposed approaches; they can achieve competitive performance compared with the current state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
senlin完成签到,获得积分20
1秒前
Liu发布了新的文献求助10
1秒前
1秒前
吴小利完成签到,获得积分10
1秒前
QQ完成签到,获得积分10
2秒前
浮游应助尹辉采纳,获得10
2秒前
236完成签到,获得积分10
3秒前
杨永乾完成签到,获得积分20
3秒前
星河圈揽完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
leek完成签到 ,获得积分10
5秒前
5秒前
华仔应助药学小团子采纳,获得10
6秒前
爆米花应助ysxl采纳,获得10
6秒前
客厅狂欢发布了新的文献求助10
6秒前
8秒前
majiko完成签到,获得积分10
8秒前
杨永乾发布了新的文献求助10
8秒前
10秒前
CHL完成签到 ,获得积分10
10秒前
12秒前
茨茨喵喵完成签到,获得积分10
12秒前
小灰灰完成签到,获得积分10
12秒前
搜集达人应助poki采纳,获得10
13秒前
酷波er应助向晚采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
灯座发布了新的文献求助10
16秒前
深竹月完成签到,获得积分10
17秒前
ccc发布了新的文献求助10
17秒前
独白完成签到 ,获得积分10
17秒前
时来运转完成签到 ,获得积分10
17秒前
欢城发布了新的文献求助10
19秒前
GEeZiii完成签到,获得积分10
19秒前
小坤不慌完成签到 ,获得积分10
19秒前
凶狗碎大石完成签到,获得积分10
21秒前
21秒前
谢大喵发布了新的文献求助10
21秒前
风清扬发布了新的文献求助10
22秒前
Linda完成签到 ,获得积分10
23秒前
fanghaoxiang发布了新的文献求助30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684190
求助须知:如何正确求助?哪些是违规求助? 5035564
关于积分的说明 15183757
捐赠科研通 4843529
什么是DOI,文献DOI怎么找? 2596718
邀请新用户注册赠送积分活动 1549418
关于科研通互助平台的介绍 1507952