光热治疗
蒸发
复合数
材料科学
化学工程
纳米技术
复合材料
热力学
物理
工程类
作者
Le Shi,Yusuf Shi,Renyuan Li,Jian Chang,Ninette Abou Mrad,Elaf Ahmed,Yong Jin,Chenlin Zhang,Sifei Zhuo,Peng Wang
出处
期刊:ACS Sustainable Chemistry & Engineering
[American Chemical Society]
日期:2018-05-25
卷期号:6 (7): 8192-8200
被引量:42
标识
DOI:10.1021/acssuschemeng.7b04695
摘要
Solar-driven water distillation by photothermal materials is emerging as a promising way of renewable energy-driven clean water production. In designing photothermal materials, light absorption, photo-to-thermal conversion efficiency, and ability to localize thermal energy at the water–air interface are three important considerations. However, one additional consideration, regenerability, has so far slipped out of the photothermal material designs at status quo. This work reveals that there is a fouling layer formed during photothermal evaporation of real seawater (Red Sea water) and domestic wastewater, which once formed would be difficult to remove. Herein, we synthesize a SiC–C composite monolith as an effective photothermal material where carbon acts as photothermal component and SiC serves as a heat conductor and strong structural support. The high mechanical strength of the monolithic composite makes it able to withstand repeatedly high strength physical cleaning by brush scrubbing and sonication, and the anti-carbon-loss mechanism generates zero carbon loss during the physical cleaning. In the case of the domestic wastewater evaporation, the bio- and organic foulants on the SiC–C composite monolith can be totally removed by annealing at 1000 °C in N2 atmosphere. We believe that the SiC–C composite monoliths are promising photothermal materials in practical solar-driven water evaporation applications thanks to their highly stable and easily regenerable properties; therefore, more research efforts are warranted to further improve their performances.
科研通智能强力驱动
Strongly Powered by AbleSci AI