Modulating the electronic structure and pseudocapacitance of δ-MnO2 through transitional metal M (M = Fe, Co and Ni) doping

兴奋剂 材料科学 假电容 电导率 拉曼光谱 X射线光电子能谱 过渡金属 价(化学) 分析化学(期刊) 超级电容器 电容 化学工程 物理化学 化学 光电子学 电极 冶金 催化作用 工程类 物理 有机化学 光学 生物化学 色谱法
作者
Lijin Yan,Lengyuan Niu,Cheng Shen,Zhaokai Zhang,Jianhua Lin,Fanyi Shen,Yinyan Gong,Can Li,Xinjuan Liu,Shiqing Xu
出处
期刊:Electrochimica Acta [Elsevier BV]
卷期号:306: 529-540 被引量:109
标识
DOI:10.1016/j.electacta.2019.03.174
摘要

Abstract The experimental capacitance of manganese oxide (MnO2) is ordinarily less than 100 F/g due to their poor electronic conductivity and low structural stability. Herein, we demonstrate the design and synthesis of doped δ-MnO2 with enhanced electronic conductivity by the introduction of transitional metal Fe, Co and Ni. Structural characterizations shown that the Raman spectra of doped MnO2 has obviously blue shifted, as well as the separation values of Mn 3s XPS spectra has expanded, which indicate the transitional metal doping successfully changes the crystal lattice of δ-MnO2. The I-V measurements confirm that the electronic conductivity of MnO2 is significantly improved after doping. As a result, the Fe doped δ-MnO2 with a 0.5% doping amount displays the highest specific capacitance of 157 F/g at 0.5 A/g, by increasing 50.4% of the specific capacity than non-doped MnO2. Simultaneously, the Co doped δ-MnO2 exhibits the superb cycling stability (almost no degradation). Furthermore, the assembled 0.5% FeMO//AC, 1% CoMO//AC and 1% NiMO//AC asymmetric supercapacitor provide a specific energy densities of 30.3, 25.2 and 23.6 Wh/kg at a power density of 1000 Wh/kg. The excellent properties of as-prepared MnO2 are due to the enhanced conductivity after doping, which can ascribed to the forming of intermediate bands, or changing the intensity of valence band/conduction band as demonstrated by spin-polarized density functional (DFT) calculations. Thus, the current work will provide a pathway for the development of high-performance pseudocapacitive materials, as well as for other energy storage systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huangjing完成签到,获得积分10
1秒前
Hello应助现实的中蓝采纳,获得10
3秒前
SciGPT应助bajie01采纳,获得10
3秒前
Ava应助雪山飞龙采纳,获得10
3秒前
4秒前
虾虾完成签到,获得积分10
4秒前
5秒前
我是老大应助taotao采纳,获得10
6秒前
LY完成签到,获得积分10
7秒前
彪壮的青亦完成签到,获得积分10
7秒前
ddfsadfs发布了新的文献求助10
8秒前
么么叽完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
ryt完成签到,获得积分20
10秒前
11秒前
JuJu完成签到,获得积分20
12秒前
坦率的夜玉完成签到 ,获得积分10
13秒前
饼冰饼发布了新的文献求助10
13秒前
13秒前
一一完成签到,获得积分10
14秒前
18969431868完成签到,获得积分10
14秒前
15秒前
15秒前
joni发布了新的文献求助20
16秒前
乐乐应助诚心的月光采纳,获得10
16秒前
wbh发布了新的文献求助10
16秒前
yyy发布了新的文献求助10
16秒前
16秒前
taotao发布了新的文献求助10
17秒前
科研通AI5应助5555采纳,获得10
17秒前
牟翎完成签到,获得积分10
19秒前
幻月完成签到,获得积分10
19秒前
冷艳咖啡豆完成签到,获得积分10
19秒前
21秒前
24秒前
雪山飞龙发布了新的文献求助10
25秒前
饼冰饼完成签到,获得积分20
25秒前
suibian完成签到,获得积分10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668063
求助须知:如何正确求助?哪些是违规求助? 3226515
关于积分的说明 9769764
捐赠科研通 2936459
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759665
科研通“疑难数据库(出版商)”最低求助积分说明 735460