Modeling of contact stress among compound particles in high energy lithium-ion battery

阳极 材料科学 锂(药物) 压力(语言学) 锂离子电池 碳纤维 粒子(生态学) 重量分析 电池(电) 复合材料 纳米技术 光电子学 热力学 电极 有机化学 哲学 物理化学 内分泌学 功率(物理) 地质学 化学 医学 物理 海洋学 复合数 语言学
作者
Xiang Gao,He Peng,Jianguo Ren,Jun Xu
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:18: 23-33 被引量:67
标识
DOI:10.1016/j.ensm.2019.02.007
摘要

Compared to other high capacity anodes, Silicon (Si) has the highest gravimetric capacity, volumetric capacity, a relatively low discharge voltage and abundant storage on the earth, Si and Si based materials has become more and more popular in battery industries among which Silicon-Carbon (Si-C) core-shell particle has been one of the most promising and commercially feasible candidates to achieve ultrahigh capacity of the anode for lithium-ion batteries. Silicon-Carbon (Si-C) core-shell particle has been one of the most promising and commercially feasible candidates to achieve ultrahigh capacity of the anode for lithium-ion batteries. However, most silicon-based anode materials suffer from severe performance deterioration especially during fast charging process. Modeling the mechanical stress and deformation of anode particles is thus of great fundamental and practical interest to understand the mechanism of silicon-carbon anodes. We establish both computational and theoretical methods to describe the stress distribution and contact behaviors within and among Si-C particles, as well as the Li+ diffusion within Si particle. We further analyze the charging rate dependent behavior of the core-shell structure. Our analysis reveals a complete link between stress, charging rate, Li+ diffusion and the structural variables. Our study thus opens a novel pathway to design the structured high-capacity silicon-carbon at nano-scale for expanding Si-based anode application within limited amount beyond cylindrical configuration and increasing the glass ceiling of battery energy density based on graphite anode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
May_9527完成签到,获得积分10
1秒前
1秒前
欧欧欧导发布了新的文献求助10
2秒前
尽平梅愿完成签到 ,获得积分10
5秒前
赘婿应助李书荣采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
6秒前
hi应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得30
6秒前
烟花应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
lascqy完成签到 ,获得积分10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
pluto应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
打打应助科研通管家采纳,获得10
6秒前
8秒前
hanna完成签到,获得积分20
8秒前
10秒前
10秒前
ke完成签到,获得积分10
11秒前
孙兆杰完成签到,获得积分10
12秒前
hahahaweiwei发布了新的文献求助10
12秒前
12秒前
LMY完成签到 ,获得积分10
15秒前
李书荣发布了新的文献求助10
15秒前
温婉的香水完成签到 ,获得积分10
16秒前
充电宝应助无奈苡采纳,获得10
17秒前
QQ发布了新的文献求助10
17秒前
李书荣发布了新的文献求助10
17秒前
科研通AI5应助美满的菠萝采纳,获得10
20秒前
完美世界应助son采纳,获得10
20秒前
Tianling完成签到,获得积分0
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965857
求助须知:如何正确求助?哪些是违规求助? 3511158
关于积分的说明 11156654
捐赠科研通 3245772
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268