Forecasting SMEs' credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach

信用风险 供应链 利润率 财务 边距(机器学习) 业务 利润(经济学) 计算机科学 机器学习 经济 营销 微观经济学
作者
You Zhu,Li Zhou,Chi Xie,Gang‐Jin Wang,Truong Van Nguyen
出处
期刊:International Journal of Production Economics [Elsevier BV]
卷期号:211: 22-33 被引量:274
标识
DOI:10.1016/j.ijpe.2019.01.032
摘要

In recent years, financial institutions (FIs) have tentatively utilized supply chain finance (SCF) as a means of solving the financing issues of small and medium-sized enterprises (SMEs). Thus, forecasting SMEs' credit risk in SCF has become one of the most critical issues in financing decision-making. Nevertheless, traditional credit risk forecasting models cannot meet the needs of such forecasting. Many researchers argue that machine learning (ML) approaches are good tools. Here we propose an enhanced hybrid ensemble ML approach called RS-MultiBoosting by incorporating two classic ensemble ML approaches, random subspace (RS) and MultiBoosting, to improve the accuracy of forecasting SMEs' credit risk. The experimental samples, originating from data on forty-six quoted SMEs and seven quoted core enterprises (CEs) in the Chinese securities market between 31 March 2014 and 31 December 2015, are collected to test the feasibility and effectiveness of the RS-MultiBoosting approach. The forecasting result shows that RS-MultiBoosting has good performance in dealing with a small sample size. From the SCF perspective, the results suggest that to enhance SMEs' financing ability, ‘traditional’ factors, such as the current and quick ratio of SMEs, remain critical. Other SCF-specific factors, for instance, the features of trade goods and the CE's profit margin, play a significant role.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
封尘逸动发布了新的文献求助10
1秒前
2秒前
2秒前
搜集达人应助李大柱采纳,获得10
3秒前
3秒前
带志发布了新的文献求助10
3秒前
lwzx完成签到,获得积分10
3秒前
FashionBoy应助王晓风采纳,获得10
4秒前
7秒前
7秒前
7秒前
Yolo完成签到,获得积分10
8秒前
默默乘云发布了新的文献求助10
8秒前
zzh完成签到 ,获得积分10
9秒前
9秒前
大胆老头发布了新的文献求助10
10秒前
aldehyde应助等你下课采纳,获得10
11秒前
11秒前
13秒前
坚定迎天发布了新的文献求助10
13秒前
jin发布了新的文献求助10
13秒前
球球完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
dou完成签到 ,获得积分10
16秒前
小小发布了新的文献求助10
17秒前
柔弱的千秋完成签到,获得积分10
18秒前
19秒前
20秒前
Ava应助上官靖采纳,获得10
22秒前
22秒前
23秒前
脑洞疼应助Hexagram采纳,获得10
23秒前
24秒前
JINYUBAO发布了新的文献求助10
24秒前
zdx1022完成签到,获得积分10
24秒前
小小完成签到,获得积分20
24秒前
25秒前
26秒前
B哥发布了新的文献求助10
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214