Forecasting SMEs' credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach

信用风险 供应链 利润率 财务 边距(机器学习) 业务 利润(经济学) 计算机科学 机器学习 经济 营销 微观经济学
作者
You Zhu,Li Zhou,Chi Xie,Gang‐Jin Wang,Truong Van Nguyen
出处
期刊:International Journal of Production Economics [Elsevier]
卷期号:211: 22-33 被引量:274
标识
DOI:10.1016/j.ijpe.2019.01.032
摘要

In recent years, financial institutions (FIs) have tentatively utilized supply chain finance (SCF) as a means of solving the financing issues of small and medium-sized enterprises (SMEs). Thus, forecasting SMEs' credit risk in SCF has become one of the most critical issues in financing decision-making. Nevertheless, traditional credit risk forecasting models cannot meet the needs of such forecasting. Many researchers argue that machine learning (ML) approaches are good tools. Here we propose an enhanced hybrid ensemble ML approach called RS-MultiBoosting by incorporating two classic ensemble ML approaches, random subspace (RS) and MultiBoosting, to improve the accuracy of forecasting SMEs' credit risk. The experimental samples, originating from data on forty-six quoted SMEs and seven quoted core enterprises (CEs) in the Chinese securities market between 31 March 2014 and 31 December 2015, are collected to test the feasibility and effectiveness of the RS-MultiBoosting approach. The forecasting result shows that RS-MultiBoosting has good performance in dealing with a small sample size. From the SCF perspective, the results suggest that to enhance SMEs' financing ability, ‘traditional’ factors, such as the current and quick ratio of SMEs, remain critical. Other SCF-specific factors, for instance, the features of trade goods and the CE's profit margin, play a significant role.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得10
刚刚
lsiah发布了新的文献求助10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
木耳完成签到,获得积分10
刚刚
汤磊发布了新的文献求助10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
1秒前
小杭76应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
香蕉诗蕊应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
May应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
桑榆应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
hejingyan应助Mao采纳,获得30
2秒前
科研通AI6应助清宴采纳,获得10
2秒前
明亮萤发布了新的文献求助10
2秒前
百里烬言发布了新的文献求助10
3秒前
轻松的穆发布了新的文献求助10
4秒前
万能图书馆应助余启家采纳,获得10
4秒前
4秒前
受伤雅琴发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
兔子完成签到,获得积分10
5秒前
英姑应助夜夜采纳,获得10
5秒前
土豆完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416335
求助须知:如何正确求助?哪些是违规求助? 4532651
关于积分的说明 14135629
捐赠科研通 4448510
什么是DOI,文献DOI怎么找? 2440252
邀请新用户注册赠送积分活动 1432175
关于科研通互助平台的介绍 1409727