过电位
双功能
分解水
析氧
电催化剂
材料科学
氮化物
电化学
纳米颗粒
催化作用
化学工程
石墨
金属
电极
无机化学
纳米技术
化学
冶金
物理化学
生物化学
图层(电子)
工程类
光催化
作者
Zhihe Liu,Hua Tan,Daobin Liu,Xiaobiao Liu,Jianping Xin,Junfeng Xie,Mingwen Zhao,Song Li,Liming Dai,Hong Liu
标识
DOI:10.1002/advs.201801829
摘要
Abstract Many efforts have been made to develop bifunctional electrocatalysts to facilitate overall water splitting. Here, a fibrous bifunctional 3D electrocatalyst is reported for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) with high performance. The remarkable electrochemical performance is attributed of the catalysts to a number of factors: the metallic character of the three components (i.e., Ni 3 N, CoN, and NiCo 2 O 4 ); the electronic structure, nanoflake‐nanosphere network with abundant electroactive sites, and the electric field effect at the interfaces between different components. The oxide–nitride/graphite fibers have the lowest overpotential requirements of 71 and 183 mV at 10 mA cm −2 for HER and OER in alkaline medium, respectively. These values are comparable to those of commercial Pt/C (20 wt%) and RuO 2 . The electrodes also show a response to HER and OER in both neutral and acid media. Furthermore, the 3D structure can be highlighted by all‐round electrodes for overall water splitting. The calculations on the changes in electrons transfer and the Femi level from oxides to oxides/nitrides reveal that the observed superb electrocatalytic performance can be attributed to the presence of Ni 3 N and CoN derived from the in situ nitridation of NiCo 2 O 4 .
科研通智能强力驱动
Strongly Powered by AbleSci AI