败血症
CD8型
免疫学
生物
T细胞
免疫系统
细胞毒性T细胞
过继性细胞移植
免疫
病毒载量
病毒
病毒学
微生物学
生物化学
体外
作者
Jianfeng Xie,Rebecca L. Crepeau,Ching‐Wen Chen,Wenxiao Zhang,Shunsuke Otani,Craig M. Coopersmith,Mandy L. Ford
标识
DOI:10.1002/jlb.4a0718-292r
摘要
Epstein-Barr virus (EBV) reactivation commonly occurs following sepsis, but the mechanisms underlying this are unknown. We utilized a murine EBV homolog (gHV) and the cecal ligation and puncture model of polymicrobial sepsis to study the impact of sepsis on gHV reactivation and CD8+ T cell immune surveillance following a septic insult. We observed a significant increase in the frequency of gHV-infected germinal center B cells on day 7 following sepsis. This increase in viral load was associated with a concomitant significant decrease in the frequencies of gHV-specific CD8+ T cells, as measured by class I MHC tetramers corresponding to the immunodominant viral epitopes. Phenotypic analysis revealed an increased frequency of gHV-specific CD8+ T cells expressing the 2B4 coinhibitory receptor in septic animals compared with sham controls. We sought to interrogate the role of 2B4 in modulating the gHV-specific CD8+ T cell response during sepsis. Results indicated that in the absence of 2B4, gHV-specific CD8+ T cell populations were maintained during sepsis, and gHV viral load was unchanged in 2B4-/- septic animals relative to 2B4-/- sham controls. WT CD8+ T cells upregulated PD-1 during sepsis, whereas 2B4-/- CD8+ T cells did not. Finally, adoptive transfer studies revealed a T cell-intrinsic effect of 2B4 coinhibition on virus-specific CD8+ T cells and gHV viral load during sepsis. These data demonstrate that sepsis-induced immune dysregulation erodes antigen-specific CD8+ responses against a latent viral infection and suggest that blockade of 2B4 may better maintain protective immunity against EBV in the context of sepsis.
科研通智能强力驱动
Strongly Powered by AbleSci AI