Opposing Temperature Dependence of the Stretching Response of Single PEG and PNiPAM Polymers

聚合物 力谱学 PEG比率 化学 聚乙二醇 化学物理 分子动力学 分子 原子力显微镜 高分子 聚乙烯 色谱中的热响应聚合物 化学工程 高分子化学 纳米技术 材料科学 计算化学 有机化学 生物化学 财务 工程类 经济 高效液相色谱法 反相色谱法
作者
Adrianna Kolberg,Christiane Wenzel,Klara Hackenstrass,Richard Schwarzl,Christian Rüttiger,Thorsten Hugel,Markus Gallei,Roland R. Netz,Bizan N. Balzer
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:141 (29): 11603-11613 被引量:56
标识
DOI:10.1021/jacs.9b04383
摘要

The response of switchable polymer blends and coatings to temperature variation is important for the development of high-performance materials. Although this has been well studied for bulk materials, a proper understanding at the molecular level, in particular for high stretching forces, is still lacking. Here we investigate the molecular details of the temperature-dependent elastic response of two widely used water-soluble polymers, namely, polyethylene glycol (PEG) and poly(N-isopropylacrylamide) (PNiPAM) with a combined approach using atomic force microscopy (AFM) based single molecule force spectroscopy (SMFS) experiments and molecular dynamics (MD) simulations. SMFS became possible by the covalent attachment of long and defined single polymers featuring a functional end group. Most interestingly, varying the temperature produces contrasting effects for PEG and PNiPAM. Surprising as these results might occur at first sight, they can be understood with the help of MD simulations in explicit water. We find that hydration is widely underestimated for the mechanics of macromolecules and that a polymer chain has competing energetic and entropic elastic components. We propose to use the temperature dependence to quantify the energetic behavior for high stretching forces. This fundamental understanding of temperature-dependent single polymer stretching response might lead to innovations like fast switchable polymer blends and coatings with polymer chains that act antagonistically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发文必过发布了新的文献求助10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
hh发布了新的文献求助10
1秒前
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
cosmos应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
琥珀完成签到,获得积分10
2秒前
522完成签到,获得积分10
3秒前
3秒前
NexusExplorer应助摩根采纳,获得10
3秒前
4秒前
4秒前
老婆婆不讲理完成签到,获得积分10
5秒前
奶油发布了新的文献求助10
5秒前
6秒前
6秒前
JACs发布了新的文献求助20
7秒前
7秒前
522发布了新的文献求助150
8秒前
8秒前
lyt发布了新的文献求助10
9秒前
小陈1122完成签到,获得积分10
9秒前
奋斗映天发布了新的文献求助20
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125011
求助须知:如何正确求助?哪些是违规求助? 4329012
关于积分的说明 13489539
捐赠科研通 4163648
什么是DOI,文献DOI怎么找? 2282463
邀请新用户注册赠送积分活动 1283623
关于科研通互助平台的介绍 1222905