Machine learning and statistical methods for clustering single-cell RNA-sequencing data

聚类分析 计算机科学 计算生物学 数据挖掘 核糖核酸 人工智能 RNA序列 生物 遗传学 转录组 基因 基因表达
作者
Raphael Petegrosso,Zhuliu Li,Rui Kuang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:21 (4): 1209-1223 被引量:187
标识
DOI:10.1093/bib/bbz063
摘要

Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell lineages based on the relations among the cells. This article reviews the machine learning and statistical methods for clustering scRNA-seq transcriptomes developed in the past few years. The review focuses on how conventional clustering techniques such as hierarchical clustering, graph-based clustering, mixture models, $k$-means, ensemble learning, neural networks and density-based clustering are modified or customized to tackle the unique challenges in scRNA-seq data analysis, such as the dropout of low-expression genes, low and uneven read coverage of transcripts, highly variable total mRNAs from single cells and ambiguous cell markers in the presence of technical biases and irrelevant confounding biological variations. We review how cell-specific normalization, the imputation of dropouts and dimension reduction methods can be applied with new statistical or optimization strategies to improve the clustering of single cells. We will also introduce those more advanced approaches to cluster scRNA-seq transcriptomes in time series data and multiple cell populations and to detect rare cell types. Several software packages developed to support the cluster analysis of scRNA-seq data are also reviewed and experimentally compared to evaluate their performance and efficiency. Finally, we conclude with useful observations and possible future directions in scRNA-seq data analytics.All the source code and data are available at https://github.com/kuanglab/single-cell-review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助奶味可可采纳,获得10
刚刚
小马甲应助帅气的傲松采纳,获得10
1秒前
图图完成签到,获得积分10
1秒前
啦啦啦完成签到 ,获得积分10
1秒前
凳凳子发布了新的文献求助10
3秒前
橘子完成签到,获得积分10
3秒前
呆萌笑晴发布了新的文献求助10
4秒前
会厌完成签到 ,获得积分10
4秒前
华仔应助renxiubo采纳,获得10
5秒前
ZZQ发布了新的文献求助10
5秒前
MQ&FF完成签到,获得积分0
6秒前
6秒前
AI完成签到,获得积分10
6秒前
wangkaichao发布了新的文献求助30
7秒前
7秒前
immm完成签到,获得积分10
7秒前
彳亍完成签到,获得积分10
8秒前
8秒前
李健应助叶惊蛰采纳,获得10
8秒前
9秒前
9秒前
lamipas应助陌上柳飞絮采纳,获得10
10秒前
10秒前
坚果完成签到 ,获得积分10
12秒前
美好的访琴完成签到,获得积分20
12秒前
飘逸宛丝完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
YJ完成签到,获得积分10
14秒前
念念发布了新的文献求助30
14秒前
太阳alright发布了新的文献求助10
14秒前
科研通AI5应助ZZQ采纳,获得10
15秒前
Jasper应助清新的苑博采纳,获得10
16秒前
16秒前
阿鑫发布了新的文献求助10
16秒前
SciGPT应助歪梨小菲采纳,获得10
16秒前
16秒前
MM完成签到,获得积分10
17秒前
Alec发布了新的文献求助30
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730226
求助须知:如何正确求助?哪些是违规求助? 3274998
关于积分的说明 9990380
捐赠科研通 2990513
什么是DOI,文献DOI怎么找? 1641210
邀请新用户注册赠送积分活动 779605
科研通“疑难数据库(出版商)”最低求助积分说明 748305