Inverted perovskite solar cells employing doped NiO hole transport layers: A review

材料科学 非阻塞I/O 钙钛矿(结构) 兴奋剂 介孔材料 光伏系统 光电子学 能量转换效率 电极 磁滞 半导体 纳米技术 化学工程 凝聚态物理 电气工程 物理化学 工程类 催化作用 物理 化学 生物化学
作者
Lin Xu,Xinfu Chen,Junjie Jin,Wei Liu,Biao Dong,Xue Bai,Hongwei Song,Peter Reiß
出处
期刊:Nano Energy [Elsevier]
卷期号:63: 103860-103860 被引量:170
标识
DOI:10.1016/j.nanoen.2019.103860
摘要

Perovskite solar cells (PSCs) have shown unprecedented efficiency progress from 3.8% in 2009 to 24.2% in 2019. Up to now, the highest device efficiencies were recently achieved by employing n-type SnO2 on the transparent front electrode with conventional structure (n-i-p structure), while TiO2 remains the most used electron transport layer in PSCs. However, the comparably large J-V hysteresis in planar PSCs and the high temperature process required in mesoporous TiO2 structures severely limit the further commercial application. Therefore, inverted PSCs (p-i-n structure) employing p-type NiOx as the hole transport layer (HTL) on the front electrode have attracted massive attention in recent years. This is mainly due to their lower processing temperature for large scale and flexible devices, negligible J−V hysteresis effects, and furthermore, better stability as compared to organic HTLs. In spite of all these merits of NiOx based HTLs, the reported efficiencies of inverted PSCs are still lower than that of conventional PSCs. The main reasons can be assigned to limitations arising from the low conductivity and a mismatched band position of NiOx. Doping has been considered to be an effective way to adjust the electrical and optical properties of semiconductor oxides in a large extent and has already shown promising results in improving the photovoltaic performance of NiOx based inverted PSCs. In this review, recent investigations about the influence of doping on the structural, electrical, and optical properties of NiOx HTLs are summarized. We also discuss the advantages and current challenges of utilizing NiOx HTLs in PSCs and attempt to give prognoses on future progress exploiting them in high-efficiency inverted PSCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maybe完成签到,获得积分10
刚刚
水何澹澹完成签到,获得积分0
1秒前
1秒前
是小曹啊完成签到,获得积分10
2秒前
隐形曼青应助纯情的道消采纳,获得10
3秒前
高高黑裤发布了新的文献求助10
3秒前
3秒前
3秒前
Orange应助HongJiang采纳,获得10
4秒前
4秒前
nmamtf完成签到,获得积分10
4秒前
共享精神应助老实乌冬面采纳,获得10
4秒前
梦初完成签到,获得积分10
4秒前
5秒前
5秒前
Yziii举报flying蝈蝈求助涉嫌违规
5秒前
未必发布了新的文献求助10
5秒前
Buxi完成签到,获得积分10
6秒前
完美世界应助Christina采纳,获得10
7秒前
汤圆园不圆关注了科研通微信公众号
8秒前
8秒前
顺心冰之发布了新的文献求助10
9秒前
10秒前
10秒前
orixero应助漂亮惜霜采纳,获得10
11秒前
深情安青应助未必采纳,获得10
11秒前
11秒前
Honeydukes完成签到,获得积分10
11秒前
石火发布了新的文献求助10
12秒前
12秒前
琛哥物理发布了新的文献求助50
12秒前
12秒前
小卢同学发布了新的文献求助10
13秒前
13秒前
77完成签到 ,获得积分10
14秒前
15秒前
漂亮白云完成签到 ,获得积分10
15秒前
DD发布了新的文献求助10
16秒前
16秒前
Atalanta完成签到,获得积分10
17秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
BIOMIMETIC RESTORATIVE DENTISTRY (volume 2) 500
Product Class 10: Acridin-9(10H)-ones and Related Systems 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3177957
求助须知:如何正确求助?哪些是违规求助? 2828923
关于积分的说明 7969251
捐赠科研通 2490245
什么是DOI,文献DOI怎么找? 1327503
科研通“疑难数据库(出版商)”最低求助积分说明 635237
版权声明 602904