First principles study on the electronic properties and Schottky barrier of Graphene/InSe heterostructure

石墨烯 异质结 肖特基势垒 材料科学 范德瓦尔斯力 单层 光电子学 肖特基二极管 带隙 凝聚态物理 纳米技术 化学 物理 分子 二极管 有机化学
作者
Khang D. Pham,Nguyen N. Hieu,Victor V. Ilyasov,Huynh V. Phuc,Bui D. Hoi,E. Feddi,Nguyen V. Thuan,Chuong V. Nguyen
出处
期刊:Superlattices and Microstructures [Elsevier BV]
卷期号:122: 570-576 被引量:30
标识
DOI:10.1016/j.spmi.2018.06.049
摘要

Graphene-based van der Waals heterostructures by stacking graphene on other two-dimensional materials have recently attracted much attention due to their extraordinary properties and greatly extend the applications of the parent materials. By means of the density functional theory from first-principles calculations, in this work, the electronic properties and Schottky contact of the Graphene/InSe heterostructure, together with the effect of strain, are investigated systematically. Our results show that in the graphene/InSe heterostructure, graphene is very weakly bound to the InSe monolayer. Furthermore, we find that due to the sublattice symmetry breaking, a tiny band gap of 5 meV is opened in the graphene/InSe heterostructure, making it suitable for applications in electronic and optoelectronic devices. Moreover, we also find that the n-type Schottky contact is formed in the graphene/InSe heterostructure with a very small Schottky barrier height of 0.05 eV. The Schottky barrier height as well as Schottky contact types in the graphene/InSe heterostructure could be controlled by vertical strain applied perpendicularly to the heterostructure. When the interlayer distance between graphene and the topmost InSe monolayer is smaller than 2.40 Å, one can observe a transformation of the Schottky contact of the graphene/InSe heterostructure. Our results may provide helpful information for designing novel high-performance graphene-based van der Waals heterostructures and explore their potential applications in future nanoelectronic and optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心的饼干完成签到,获得积分10
刚刚
杨羕发布了新的文献求助10
1秒前
2秒前
喃逸完成签到,获得积分10
2秒前
3秒前
4秒前
小溪溪发布了新的文献求助10
6秒前
窦一笑完成签到,获得积分10
6秒前
NexusExplorer应助Duck不必采纳,获得10
7秒前
朱凌娇完成签到,获得积分10
8秒前
8秒前
8秒前
HUU完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
dmcyer完成签到,获得积分10
10秒前
11秒前
11秒前
jiujiujiuo完成签到,获得积分10
11秒前
12秒前
12秒前
从不内卷发布了新的文献求助10
14秒前
激情的凛发布了新的文献求助10
14秒前
啦啦啦完成签到 ,获得积分10
15秒前
16秒前
16秒前
17秒前
A1len完成签到,获得积分10
17秒前
老迟到的钢铁侠完成签到,获得积分10
17秒前
18秒前
29发布了新的文献求助10
18秒前
原来发布了新的文献求助10
19秒前
19秒前
19秒前
kaio完成签到,获得积分10
19秒前
论高等数学的无用性完成签到 ,获得积分10
21秒前
21秒前
22秒前
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144