亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multilevel Wavelet Decomposition Network for Interpretable Time Series Analysis

可解释性 计算机科学 小波 人工智能 深度学习 时间序列 人工神经网络 机器学习 嵌入 模式识别(心理学) 小波变换 残余物 数据挖掘 算法 系列(地层学) 生物 古生物学
作者
Jingyuan Wang,Ze Wang,Jianfeng Li,Junjie Wu
出处
期刊:Cornell University - arXiv 被引量:131
标识
DOI:10.1145/3219819.3220060
摘要

Recent years have witnessed the unprecedented rising of time series from almost all kindes of academic and industrial fields. Various types of deep neural network models have been introduced to time series analysis, but the important frequency information is yet lack of effective modeling. In light of this, in this paper we propose a wavelet-based neural network structure called multilevel Wavelet Decomposition Network (mWDN) for building frequency-aware deep learning models for time series analysis. mWDN preserves the advantage of multilevel discrete wavelet decomposition in frequency learning while enables the fine-tuning of all parameters under a deep neural network framework. Based on mWDN, we further propose two deep learning models called Residual Classification Flow (RCF) and multi-frequecy Long Short-Term Memory (mLSTM) for time series classification and forecasting, respectively. The two models take all or partial mWDN decomposed sub-series in different frequencies as input, and resort to the back propagation algorithm to learn all the parameters globally, which enables seamless embedding of wavelet-based frequency analysis into deep learning frameworks. Extensive experiments on 40 UCR datasets and a real-world user volume dataset demonstrate the excellent performance of our time series models based on mWDN. In particular, we propose an importance analysis method to mWDN based models, which successfully identifies those time-series elements and mWDN layers that are crucially important to time series analysis. This indeed indicates the interpretability advantage of mWDN, and can be viewed as an indepth exploration to interpretable deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
37秒前
蜗牛小霸王完成签到,获得积分10
46秒前
47秒前
49秒前
50秒前
rerorero18发布了新的文献求助10
53秒前
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
sailingluwl完成签到,获得积分10
1分钟前
1分钟前
今晚喝两杯完成签到,获得积分20
1分钟前
季生完成签到,获得积分10
1分钟前
染东完成签到,获得积分10
1分钟前
1分钟前
1分钟前
难过的踏歌完成签到,获得积分10
1分钟前
雁塔完成签到 ,获得积分10
1分钟前
yangjoy完成签到 ,获得积分10
1分钟前
2分钟前
bobo完成签到 ,获得积分10
2分钟前
研友_Bn29bL发布了新的文献求助10
2分钟前
2分钟前
研友_Bn29bL完成签到,获得积分20
2分钟前
黄瑞发布了新的文献求助10
2分钟前
2分钟前
黄瑞完成签到,获得积分20
2分钟前
2分钟前
汉堡包应助娇气的火车采纳,获得10
2分钟前
研友_VZG7GZ应助黄瑞采纳,获得10
2分钟前
2分钟前
NexusExplorer应助ZSN采纳,获得10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
3分钟前
852应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4879953
求助须知:如何正确求助?哪些是违规求助? 4166788
关于积分的说明 12927209
捐赠科研通 3925467
什么是DOI,文献DOI怎么找? 2154812
邀请新用户注册赠送积分活动 1172867
关于科研通互助平台的介绍 1076882