Multilevel Wavelet Decomposition Network for Interpretable Time Series Analysis

可解释性 计算机科学 小波 人工智能 深度学习 时间序列 人工神经网络 机器学习 嵌入 模式识别(心理学) 小波变换 残余物 数据挖掘 算法 系列(地层学) 生物 古生物学
作者
Jingyuan Wang,Ze Wang,Jianfeng Li,Junjie Wu
出处
期刊:Cornell University - arXiv 被引量:131
标识
DOI:10.1145/3219819.3220060
摘要

Recent years have witnessed the unprecedented rising of time series from almost all kindes of academic and industrial fields. Various types of deep neural network models have been introduced to time series analysis, but the important frequency information is yet lack of effective modeling. In light of this, in this paper we propose a wavelet-based neural network structure called multilevel Wavelet Decomposition Network (mWDN) for building frequency-aware deep learning models for time series analysis. mWDN preserves the advantage of multilevel discrete wavelet decomposition in frequency learning while enables the fine-tuning of all parameters under a deep neural network framework. Based on mWDN, we further propose two deep learning models called Residual Classification Flow (RCF) and multi-frequecy Long Short-Term Memory (mLSTM) for time series classification and forecasting, respectively. The two models take all or partial mWDN decomposed sub-series in different frequencies as input, and resort to the back propagation algorithm to learn all the parameters globally, which enables seamless embedding of wavelet-based frequency analysis into deep learning frameworks. Extensive experiments on 40 UCR datasets and a real-world user volume dataset demonstrate the excellent performance of our time series models based on mWDN. In particular, we propose an importance analysis method to mWDN based models, which successfully identifies those time-series elements and mWDN layers that are crucially important to time series analysis. This indeed indicates the interpretability advantage of mWDN, and can be viewed as an indepth exploration to interpretable deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭翔发布了新的文献求助10
刚刚
刚刚
guoguo完成签到,获得积分10
1秒前
1秒前
机智谷蕊发布了新的文献求助10
2秒前
blue发布了新的文献求助10
2秒前
2秒前
薛定谔的猫完成签到,获得积分10
2秒前
2秒前
谢谢发布了新的文献求助10
3秒前
dearcih完成签到,获得积分10
3秒前
Wone3完成签到 ,获得积分10
3秒前
后陡门的夏天完成签到,获得积分10
3秒前
ikun发布了新的文献求助10
3秒前
4秒前
4秒前
吴彦祖发布了新的文献求助10
4秒前
tw0125完成签到 ,获得积分10
5秒前
忧郁的期待完成签到,获得积分10
5秒前
5秒前
6秒前
隐形曼青应助八月宁静采纳,获得10
6秒前
6秒前
6秒前
TYT发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
柏达发布了新的文献求助10
7秒前
胖子完成签到,获得积分10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009871
求助须知:如何正确求助?哪些是违规求助? 3549812
关于积分的说明 11303839
捐赠科研通 3284342
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886393
科研通“疑难数据库(出版商)”最低求助积分说明 811406