Multilevel Wavelet Decomposition Network for Interpretable Time Series Analysis

可解释性 计算机科学 小波 人工智能 深度学习 时间序列 人工神经网络 机器学习 嵌入 模式识别(心理学) 小波变换 残余物 数据挖掘 算法 系列(地层学) 古生物学 生物
作者
Jingyuan Wang,Ze Wang,Jianfeng Li,Junjie Wu
出处
期刊:Cornell University - arXiv 被引量:131
标识
DOI:10.1145/3219819.3220060
摘要

Recent years have witnessed the unprecedented rising of time series from almost all kindes of academic and industrial fields. Various types of deep neural network models have been introduced to time series analysis, but the important frequency information is yet lack of effective modeling. In light of this, in this paper we propose a wavelet-based neural network structure called multilevel Wavelet Decomposition Network (mWDN) for building frequency-aware deep learning models for time series analysis. mWDN preserves the advantage of multilevel discrete wavelet decomposition in frequency learning while enables the fine-tuning of all parameters under a deep neural network framework. Based on mWDN, we further propose two deep learning models called Residual Classification Flow (RCF) and multi-frequecy Long Short-Term Memory (mLSTM) for time series classification and forecasting, respectively. The two models take all or partial mWDN decomposed sub-series in different frequencies as input, and resort to the back propagation algorithm to learn all the parameters globally, which enables seamless embedding of wavelet-based frequency analysis into deep learning frameworks. Extensive experiments on 40 UCR datasets and a real-world user volume dataset demonstrate the excellent performance of our time series models based on mWDN. In particular, we propose an importance analysis method to mWDN based models, which successfully identifies those time-series elements and mWDN layers that are crucially important to time series analysis. This indeed indicates the interpretability advantage of mWDN, and can be viewed as an indepth exploration to interpretable deep learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
专注的念桃完成签到,获得积分10
7秒前
风趣的芒果完成签到,获得积分10
7秒前
11秒前
c1302128340完成签到,获得积分10
13秒前
JamesPei应助忐忑的红牛采纳,获得10
15秒前
大个应助Tsuki采纳,获得10
15秒前
DoctorXu完成签到,获得积分10
16秒前
嘻嘻完成签到,获得积分10
18秒前
Garnieta完成签到,获得积分10
19秒前
活力白亦完成签到 ,获得积分10
20秒前
Cwin完成签到,获得积分10
20秒前
21秒前
酷酷的麦片完成签到,获得积分10
21秒前
22秒前
科研通AI6应助令宏采纳,获得10
23秒前
BowieHuang应助科研通管家采纳,获得10
25秒前
orixero应助科研通管家采纳,获得10
25秒前
ding应助科研通管家采纳,获得10
25秒前
桐桐应助科研通管家采纳,获得10
25秒前
25秒前
英吉利25发布了新的文献求助30
26秒前
27秒前
kingwill应助心灵美的不愁采纳,获得20
29秒前
29秒前
31秒前
32秒前
赘婿应助pangkuan采纳,获得10
34秒前
jiajx21发布了新的文献求助10
34秒前
35秒前
liuzy完成签到,获得积分10
35秒前
chris完成签到,获得积分10
38秒前
心灵美的不愁给心灵美的不愁的求助进行了留言
39秒前
田様应助鱼子不吃饭采纳,获得10
39秒前
novQ发布了新的文献求助10
40秒前
烟花应助norville采纳,获得10
42秒前
42秒前
agnes完成签到,获得积分10
42秒前
小希发布了新的文献求助10
42秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563647
求助须知:如何正确求助?哪些是违规求助? 4648551
关于积分的说明 14685308
捐赠科研通 4590492
什么是DOI,文献DOI怎么找? 2518611
邀请新用户注册赠送积分活动 1491196
关于科研通互助平台的介绍 1462478