ANOMALOUS: A Joint Modeling Approach for Anomaly Detection on Attributed Networks

异常检测 计算机科学 子空间拓扑 数据挖掘 异常(物理) 离群值 选择(遗传算法) 相似性(几何) 节点(物理) 残余物 机器学习 人工智能 算法 结构工程 图像(数学) 物理 凝聚态物理 工程类
作者
Zhen Peng,Minnan Luo,Jundong Li,Huan Liu,Qinghua Zheng
标识
DOI:10.24963/ijcai.2018/488
摘要

The key point of anomaly detection on attributed networks lies in the seamless integration of network structure information and attribute information. A vast majority of existing works are mainly based on the Homophily assumption that implies the nodal attribute similarity of connected nodes. Nonetheless, this assumption is untenable in practice as the existence of noisy and structurally irrelevant attributes may adversely affect the anomaly detection performance. Despite the fact that recent attempts perform subspace selection to address this issue, these algorithms treat subspace selection and anomaly detection as two separate steps which often leads to suboptimal solutions. In this paper, we investigate how to fuse attribute and network structure information more synergistically to avoid the adverse effects brought by noisy and structurally irrelevant attributes. Methodologically, we propose a novel joint framework to conduct attribute selection and anomaly detection as a whole based on CUR decomposition and residual analysis. By filtering out noisy and irrelevant node attributes, we perform anomaly detection with the remaining representative attributes. Experimental results on both synthetic and real-world datasets corroborate the effectiveness of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小巧皮卡丘完成签到,获得积分10
1秒前
脑洞疼应助辛子采纳,获得10
1秒前
认真的焦发布了新的文献求助10
1秒前
huilihub发布了新的文献求助10
2秒前
姚小包子发布了新的文献求助10
2秒前
2秒前
2秒前
Elaine2021完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
LEMONS应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
淑儿哥哥完成签到,获得积分10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
丘比特应助张德帅采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
妩媚的强炫完成签到,获得积分10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
meng17应助科研通管家采纳,获得20
4秒前
Billy应助科研通管家采纳,获得30
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
连续体26发布了新的文献求助30
5秒前
5秒前
李健应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
5秒前
Billy应助科研通管家采纳,获得30
5秒前
LYSM应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149