A Multi-Objective Hybrid Filter-Wrapper Evolutionary Approach for Feature Construction on High-Dimensional Data

特征选择 计算机科学 分类器(UML) 数据挖掘 降维 遗传程序设计 维数之咒 人工智能 特征(语言学) 滤波器(信号处理) 模式识别(心理学) 适应度函数 进化算法 人口 机器学习 遗传算法 人口学 社会学 哲学 语言学 计算机视觉
作者
Marwa Hammami,Slim Bechikh,Chih‐Cheng Hung,Lamjed Ben Saïd
标识
DOI:10.1109/cec.2018.8477771
摘要

Feature selection and construction are important pre-processing techniques in data mining. They may allow not only dimensionality reduction but also classifier accuracy and efficiency improvement. These two techniques are of great importance especially for the case of high-dimensional data. Feature construction for high-dimensional data is still a very challenging topic. This can be explained by the large search space of feature combinations, whose size is a function of the number of features. Recently, researchers have used Genetic Programming (GP) for feature construction and the obtained results were promising. Unfortunately, the wrapper evaluation of each feature subset, where a feature can be constructed by a combination of features, is computationally intensive since such evaluation requires running the classifier on the data sets. Motivated by this observation, we propose, in this paper, a hybrid multiobjective evolutionary approach for efficient feature construction and selection. Our approach uses two filter objectives and one wrapper objective corresponding to the accuracy. In fact, the whole population is evaluated using two filter objectives. However, only non-dominated (best) feature subsets are improved using an indicator-based local search that optimizes the three objectives simultaneously. Our approach has been assessed on six high-dimensional datasets and compared with two existing prominent GP approaches, using three different classifiers for accuracy evaluation. Based on the obtained results, our approach is shown to provide competitive and better results compared with two competitor GP algorithms tested in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助月下荷花采纳,获得10
1秒前
四叶草完成签到,获得积分10
1秒前
2秒前
青岩发布了新的文献求助10
3秒前
丘比特应助懂得瞧采纳,获得10
7秒前
8秒前
ningqing发布了新的文献求助10
8秒前
8秒前
10秒前
11秒前
崔志海完成签到,获得积分10
12秒前
12秒前
搜集达人应助单纯的巧荷采纳,获得10
13秒前
科研通AI5应助一直小虾米采纳,获得10
13秒前
PENGDOCTOR发布了新的文献求助20
14秒前
古月发布了新的文献求助30
14秒前
77发布了新的文献求助10
16秒前
唐萧完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
22秒前
BUTCAT发布了新的文献求助10
23秒前
23秒前
25秒前
哈哈哈完成签到,获得积分10
26秒前
iiiau发布了新的文献求助10
26秒前
29秒前
31秒前
liuwenjie完成签到,获得积分10
34秒前
34秒前
英姑应助LY_Hust采纳,获得10
34秒前
轻松雁蓉发布了新的文献求助10
35秒前
36秒前
36秒前
36秒前
科研通AI2S应助傻子与白痴采纳,获得10
37秒前
37秒前
40秒前
小刘发布了新的文献求助10
41秒前
星辰大海应助拼搏的败采纳,获得10
41秒前
搞对发布了新的文献求助10
42秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980440
求助须知:如何正确求助?哪些是违规求助? 3524384
关于积分的说明 11221298
捐赠科研通 3261829
什么是DOI,文献DOI怎么找? 1800909
邀请新用户注册赠送积分活动 879476
科研通“疑难数据库(出版商)”最低求助积分说明 807283