A Multi-Objective Hybrid Filter-Wrapper Evolutionary Approach for Feature Construction on High-Dimensional Data

特征选择 计算机科学 分类器(UML) 数据挖掘 降维 遗传程序设计 维数之咒 人工智能 特征(语言学) 滤波器(信号处理) 模式识别(心理学) 适应度函数 进化算法 人口 机器学习 遗传算法 哲学 语言学 计算机视觉 人口学 社会学
作者
Marwa Hammami,Slim Bechikh,Chih‐Cheng Hung,Lamjed Ben Saïd
标识
DOI:10.1109/cec.2018.8477771
摘要

Feature selection and construction are important pre-processing techniques in data mining. They may allow not only dimensionality reduction but also classifier accuracy and efficiency improvement. These two techniques are of great importance especially for the case of high-dimensional data. Feature construction for high-dimensional data is still a very challenging topic. This can be explained by the large search space of feature combinations, whose size is a function of the number of features. Recently, researchers have used Genetic Programming (GP) for feature construction and the obtained results were promising. Unfortunately, the wrapper evaluation of each feature subset, where a feature can be constructed by a combination of features, is computationally intensive since such evaluation requires running the classifier on the data sets. Motivated by this observation, we propose, in this paper, a hybrid multiobjective evolutionary approach for efficient feature construction and selection. Our approach uses two filter objectives and one wrapper objective corresponding to the accuracy. In fact, the whole population is evaluated using two filter objectives. However, only non-dominated (best) feature subsets are improved using an indicator-based local search that optimizes the three objectives simultaneously. Our approach has been assessed on six high-dimensional datasets and compared with two existing prominent GP approaches, using three different classifiers for accuracy evaluation. Based on the obtained results, our approach is shown to provide competitive and better results compared with two competitor GP algorithms tested in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心芯发布了新的文献求助10
1秒前
现代雅香发布了新的文献求助30
1秒前
小肥鱼完成签到,获得积分10
2秒前
SilentStorm完成签到,获得积分10
2秒前
3秒前
英俊的铭应助独特亦旋采纳,获得10
3秒前
evelyn发布了新的文献求助10
3秒前
wzc发布了新的文献求助10
3秒前
4秒前
科研通AI6应助Norajjj采纳,获得10
4秒前
木仓完成签到,获得积分10
4秒前
5秒前
5秒前
赘婿应助ikkk采纳,获得10
8秒前
8秒前
xxt发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
Akim应助zhujingyao采纳,获得10
9秒前
9秒前
Zyzpkilly发布了新的文献求助10
10秒前
Rainy发布了新的文献求助10
10秒前
12秒前
眯眯眼的嵩完成签到,获得积分10
12秒前
hanlixuan完成签到 ,获得积分10
13秒前
likunyang完成签到,获得积分10
13秒前
桐桐应助自由自在采纳,获得10
13秒前
14秒前
隐形曼青应助lyf471采纳,获得30
14秒前
刘庭杨给刘庭杨的求助进行了留言
14秒前
15秒前
15秒前
tebf完成签到,获得积分10
15秒前
15秒前
15秒前
缓慢曼易发布了新的文献求助50
15秒前
彭于晏应助wzc采纳,获得10
16秒前
灵珠学医发布了新的文献求助10
17秒前
FashionBoy应助王洪超采纳,获得30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656681
求助须知:如何正确求助?哪些是违规求助? 4804855
关于积分的说明 15076883
捐赠科研通 4814887
什么是DOI,文献DOI怎么找? 2576120
邀请新用户注册赠送积分活动 1531370
关于科研通互助平台的介绍 1489958