A Multi-Objective Hybrid Filter-Wrapper Evolutionary Approach for Feature Construction on High-Dimensional Data

特征选择 计算机科学 分类器(UML) 数据挖掘 降维 遗传程序设计 维数之咒 人工智能 特征(语言学) 滤波器(信号处理) 模式识别(心理学) 适应度函数 进化算法 人口 机器学习 遗传算法 哲学 语言学 计算机视觉 人口学 社会学
作者
Marwa Hammami,Slim Bechikh,Chih‐Cheng Hung,Lamjed Ben Saïd
标识
DOI:10.1109/cec.2018.8477771
摘要

Feature selection and construction are important pre-processing techniques in data mining. They may allow not only dimensionality reduction but also classifier accuracy and efficiency improvement. These two techniques are of great importance especially for the case of high-dimensional data. Feature construction for high-dimensional data is still a very challenging topic. This can be explained by the large search space of feature combinations, whose size is a function of the number of features. Recently, researchers have used Genetic Programming (GP) for feature construction and the obtained results were promising. Unfortunately, the wrapper evaluation of each feature subset, where a feature can be constructed by a combination of features, is computationally intensive since such evaluation requires running the classifier on the data sets. Motivated by this observation, we propose, in this paper, a hybrid multiobjective evolutionary approach for efficient feature construction and selection. Our approach uses two filter objectives and one wrapper objective corresponding to the accuracy. In fact, the whole population is evaluated using two filter objectives. However, only non-dominated (best) feature subsets are improved using an indicator-based local search that optimizes the three objectives simultaneously. Our approach has been assessed on six high-dimensional datasets and compared with two existing prominent GP approaches, using three different classifiers for accuracy evaluation. Based on the obtained results, our approach is shown to provide competitive and better results compared with two competitor GP algorithms tested in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十三完成签到 ,获得积分10
4秒前
浮游应助Kevin采纳,获得10
4秒前
橙子雨发布了新的文献求助10
4秒前
久久完成签到 ,获得积分10
6秒前
AA18236931952发布了新的文献求助10
9秒前
张琨完成签到 ,获得积分10
10秒前
无情的素完成签到,获得积分10
13秒前
科研通AI6应助现代水卉采纳,获得10
19秒前
Nothing发布了新的文献求助10
26秒前
Zewen_Li应助迈尔馬采纳,获得10
30秒前
科研通AI6应助Jere采纳,获得20
31秒前
小尹完成签到 ,获得积分10
34秒前
科研通AI6应助Xjx6519采纳,获得10
35秒前
lxl发布了新的文献求助10
37秒前
Hello应助禹平露采纳,获得10
38秒前
46秒前
Lancet发布了新的文献求助20
47秒前
森禾完成签到 ,获得积分10
50秒前
50秒前
上官若男应助曾经的帅哥采纳,获得10
53秒前
陈星翰完成签到,获得积分10
53秒前
stumm发布了新的文献求助10
55秒前
Chief完成签到,获得积分0
56秒前
56秒前
57秒前
奋斗成风发布了新的文献求助10
59秒前
浮游应助Kevin采纳,获得10
1分钟前
浮游应助扬灵兮采纳,获得10
1分钟前
安详的冷安完成签到,获得积分10
1分钟前
烟花应助keke采纳,获得10
1分钟前
还行吧完成签到 ,获得积分10
1分钟前
俏皮的安萱完成签到 ,获得积分10
1分钟前
材袅完成签到,获得积分10
1分钟前
1分钟前
盐焗鱼丸完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
keke完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557614
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668844
捐赠科研通 4584126
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523