Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault Diagnosis of Machines With Unlabeled Data

学习迁移 卷积神经网络 计算机科学 人工智能 域适应 深度学习 领域(数学分析) 模式识别(心理学) 数据建模 人工神经网络 机器学习 断层(地质) 数据挖掘 分类器(UML) 数据库 地质学 数学分析 地震学 数学
作者
Liang Guo,Yaguo Lei,Saibo Xing,Tao Yan,Naipeng Li
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:66 (9): 7316-7325 被引量:1012
标识
DOI:10.1109/tie.2018.2877090
摘要

The success of intelligent fault diagnosis of machines relies on the following two conditions: 1) labeled data with fault information are available; and 2) the training and testing data are drawn from the same probability distribution. However, for some machines, it is difficult to obtain massive labeled data. Moreover, even though labeled data can be obtained from some machines, the intelligent fault diagnosis method trained with such labeled data possibly fails in classifying unlabeled data acquired from the other machines due to data distribution discrepancy. These problems limit the successful applications of intelligent fault diagnosis of machines with unlabeled data. As a potential tool, transfer learning adapts a model trained in a source domain to its application in a target domain. Based on the transfer learning, we propose a new intelligent method named deep convolutional transfer learning network (DCTLN). A DCTLN consists of two modules: condition recognition and domain adaptation. The condition recognition module is constructed by a one-dimensional (1-D) convolutional neural network (CNN) to automatically learn features and recognize health conditions of machines. The domain adaptation module facilitates the 1-D CNN to learn domain-invariant features by maximizing domain recognition errors and minimizing the probability distribution distance. The effectiveness of the proposed method is verified using six transfer fault diagnosis experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小管完成签到,获得积分20
1秒前
leaolf应助小蓝采纳,获得20
1秒前
鲤鱼平安发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
彭于晏应助栗子采纳,获得10
2秒前
细心夏槐完成签到,获得积分10
3秒前
3秒前
LILIN发布了新的文献求助10
3秒前
3秒前
3秒前
时尚初柳完成签到,获得积分10
3秒前
xjm完成签到,获得积分20
4秒前
4秒前
ding应助Gotyababy采纳,获得10
4秒前
WangSiwei完成签到,获得积分10
4秒前
4秒前
小管发布了新的文献求助20
5秒前
弄香完成签到,获得积分10
5秒前
5秒前
5秒前
大个应助灰灰采纳,获得10
6秒前
超级小康完成签到,获得积分20
6秒前
我是老大应助三胖采纳,获得10
6秒前
7秒前
隐形曼青应助Friday采纳,获得10
7秒前
jeeya完成签到,获得积分10
7秒前
野草完成签到,获得积分10
8秒前
科研通AI2S应助wucl1990采纳,获得10
8秒前
Dean举报求助违规成功
8秒前
wy.he举报求助违规成功
8秒前
圆锥香蕉举报求助违规成功
8秒前
8秒前
伶俐草丛发布了新的文献求助10
9秒前
ouuang发布了新的文献求助10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
9秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
老实雨莲发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437