Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault Diagnosis of Machines With Unlabeled Data

学习迁移 卷积神经网络 计算机科学 人工智能 域适应 深度学习 领域(数学分析) 模式识别(心理学) 数据建模 人工神经网络 机器学习 断层(地质) 数据挖掘 分类器(UML) 数据库 地质学 数学分析 地震学 数学
作者
Liang Guo,Yaguo Lei,Saibo Xing,Tao Yan,Naipeng Li
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:66 (9): 7316-7325 被引量:1012
标识
DOI:10.1109/tie.2018.2877090
摘要

The success of intelligent fault diagnosis of machines relies on the following two conditions: 1) labeled data with fault information are available; and 2) the training and testing data are drawn from the same probability distribution. However, for some machines, it is difficult to obtain massive labeled data. Moreover, even though labeled data can be obtained from some machines, the intelligent fault diagnosis method trained with such labeled data possibly fails in classifying unlabeled data acquired from the other machines due to data distribution discrepancy. These problems limit the successful applications of intelligent fault diagnosis of machines with unlabeled data. As a potential tool, transfer learning adapts a model trained in a source domain to its application in a target domain. Based on the transfer learning, we propose a new intelligent method named deep convolutional transfer learning network (DCTLN). A DCTLN consists of two modules: condition recognition and domain adaptation. The condition recognition module is constructed by a one-dimensional (1-D) convolutional neural network (CNN) to automatically learn features and recognize health conditions of machines. The domain adaptation module facilitates the 1-D CNN to learn domain-invariant features by maximizing domain recognition errors and minimizing the probability distribution distance. The effectiveness of the proposed method is verified using six transfer fault diagnosis experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Richard完成签到 ,获得积分10
刚刚
青鸟飞鱼完成签到,获得积分10
刚刚
yang完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
寻鹿发布了新的文献求助10
5秒前
小曾应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
han应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
sansan完成签到 ,获得积分10
6秒前
han应助科研通管家采纳,获得10
6秒前
Theprisoners应助科研通管家采纳,获得20
6秒前
轩辕断天发布了新的文献求助10
6秒前
ding应助科研通管家采纳,获得10
6秒前
7秒前
orixero应助科研通管家采纳,获得10
7秒前
鸣笛应助科研通管家采纳,获得50
7秒前
yar应助科研通管家采纳,获得10
7秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
科研助手6应助科研通管家采纳,获得10
8秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061