微泡
纳米粒子跟踪分析
胶质瘤
外体
流式细胞术
医学
癌症研究
病理
分子生物学
免疫学
化学
小RNA
生物
生物化学
基因
作者
Luz Milbeth Cumba Garcia,Timothy E. Peterson,Mario Cepeda,Aaron J. Johnson,Ian F. Parney
标识
DOI:10.3389/fonc.2019.00651
摘要
Gliomas including glioblastoma (GBM) are the most common primary malignant brain tumors. Glioma extracellular vesicles (EVs) including exosomes have biological effects (e.g. immunosuppression) and contain tumor-specific cargo that could facilitate liquid biopsies. We aimed to develop a simple, reproducible technique to isolate plasma exosomes in glioma patients. Glioma patients’ and normal donors’ plasma exosomes underwent brief centrifugation to remove cells/debris followed by serial density gradient ultracentrifugation (DGU). EV size/concentration was determined by nanoparticle tracking. Protein cargo was screened by array, western blot, and ELISA. Nanoscale flow cytometry analysis quantified exosome and microvesicle populations pre- and post-DGU. One-step DGU efficiently isolates exosomes for nanoparticle tracking. Wild type isocitrate dehydrogenase glioma patients’ (i.e more aggressive tumors) plasma exosomes are smaller but higher concentration than normal donors. A second DGU efficiently concentrates exosomes for subsequent cargo analysis but results in vesicle aggregation that skews nanoparticle tracking. Cytokines and co-stimulatory molecules are readily detected but appeared globally reduced in GBM patients’ exosomes. Surprisingly, immunosuppressive programmed death-ligand 1 (PD-L1) is present in both patients’ and normal donors’ exosomes. Nanoscale flow cytometry confirms efficient exosome (100nm) in GBM patients’ plasma pre-DGU. Serial DGU efficiently isolates plasma exosomes with distinct differences between GBM patients and normal donors, suggesting utility for non-invasive biomarker assessment. Initial results suggest global immunosuppression rather than increased circulating tumor-derived immunosuppressive exosomes, though further assessment is needed. Increased glioma patients’ plasma microvesicles suggest these may also be a key source for biomarkers.
科研通智能强力驱动
Strongly Powered by AbleSci AI