子宫内膜异位症
间质细胞
雌激素
癌症研究
盆腔疼痛
生物
下调和上调
细胞迁移
细胞
男科
内科学
内分泌学
医学
基因
放射科
生物化学
遗传学
作者
Zhen Xu,Liping Zhang,Qian Yu,Yanan Zhang,Lei Yan,Zi‐Jiang Chen
出处
期刊:Molecular human reproduction
[Oxford University Press]
日期:2019-07-19
卷期号:25 (9): 550-561
被引量:59
标识
DOI:10.1093/molehr/gaz040
摘要
Abstract Fibrotic tissue may contribute to the origin of some endometriosis-related symptoms, such as chronic pelvic pain and infertility. Alterations in the H19/miR-216a-5p/ACTA2 pathway may mediate the regulation of eutopic endometrial stromal cell (euESC) invasion and migration and may represent a potential mechanism underlying fibrous tissue formation or fibrosis in women with endometriosis. In this study, we aimed to determine the expression of H19 and ACTA2 in endometrial tissues of women with endometriosis. Two groups of 23 infertile women with endometriosis and 23 matched infertile women without endometriosis were investigated. Primary cultured cells of endometrial tissues were analyzed using RT-PCR and western blotting (WB) to determine expression of H19 and ACTA2. 5-Ethyl-2′-deoxyuridine, CCK8 and Transwell assays were used to study the functions of H19 and ACTA2. Human embryonic kidney 293 cells were used for luciferase assays to study miR-216a-5p binding sites with H19 and ACTA2. We found that H19 and ACTA2 levels were significantly higher in endometriosis euESCs than in control euESCs (P < 0.05) and were positively correlated in endometriosis euESCs. Luciferase assays indicated that H19 regulates ACTA2 expression via competition for inhibitory miR-216a-5p binding sites. Our results indicate that alterations in the estrogen/H19/miR-216a-5p/ACTA2 pathway regulated endometriosis euESC invasion and migration. Downregulation of H19 or ACTA2 inhibited endometriosis euESC invasion and migration; however, estrogen promoted endometriosis euESC invasion and migration via H19. The main limitation of our study was that experiments were conducted in vitro and further in vivo studies are required in the future. However, our study showed that primary cultured cells represented endometriosis cells more clearly than cell lines.
科研通智能强力驱动
Strongly Powered by AbleSci AI