亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Source localization for hazardous material release in an outdoor chemical plant via a combination of LSTM-RNN and CFD simulation

循环神经网络 化工厂 泄漏 人工神经网络 计算机科学 危险废物 计算流体力学 人工智能 模拟 机器学习 工程类 环境工程 航空航天工程 废物管理
作者
Hyunseung Kim,Myeongnam Park,Chang Won Kim,Dongil Shin
出处
期刊:Computers & Chemical Engineering [Elsevier]
卷期号:125: 476-489 被引量:87
标识
DOI:10.1016/j.compchemeng.2019.03.012
摘要

Chemical leak accidents not properly handled at the early stage can spread to major industrial disasters escalating through fire and explosion. Therefore, it is very important to develop a method that enables prompt and systematic response by identifying the location of leakage source quickly and accurately and informing on-site personnel of the probable location(s). In this study, a model that predicts the suspicious leak location(s) in real-time, using sensor data, is proposed. Feed-forward neural network and recurrent neural network with long short-term memory that learned the data gathered from the installed sensors are proposed to predict the Top-5 points in the order of highest likelihood. In order to train and verify the neural networks, the sensor data generated from computational fluid dynamics simulations for a real chemical plant are used. The model learns the inverse problem solving for accident scenarios and predicts the leak point with very high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄志伟发布了新的文献求助10
1秒前
JL完成签到,获得积分10
1秒前
nana发布了新的文献求助10
8秒前
完美世界应助烟消云散采纳,获得80
11秒前
雪白丸子完成签到,获得积分10
16秒前
琪琪完成签到,获得积分10
19秒前
20秒前
小二郎应助无限的雁芙采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
维奈克拉应助科研通管家采纳,获得20
21秒前
21秒前
22秒前
nana完成签到,获得积分10
22秒前
孙紫阳完成签到,获得积分10
24秒前
隐形曼青应助烟消云散采纳,获得80
25秒前
31秒前
31秒前
dad0ng发布了新的文献求助10
36秒前
TGM_Hedwig发布了新的文献求助10
37秒前
zz完成签到,获得积分20
38秒前
慕青应助烟消云散采纳,获得80
39秒前
大个应助dad0ng采纳,获得10
41秒前
田様应助TGM_Hedwig采纳,获得10
45秒前
zz发布了新的文献求助10
48秒前
酷波er应助烟消云散采纳,获得80
51秒前
51秒前
量子星尘发布了新的文献求助10
57秒前
科研通AI6.1应助烟消云散采纳,获得80
1分钟前
努力的淼淼完成签到 ,获得积分10
1分钟前
duan完成签到 ,获得积分10
1分钟前
Alice完成签到 ,获得积分10
1分钟前
稻子完成签到 ,获得积分0
1分钟前
SciGPT应助烟消云散采纳,获得10
1分钟前
朴素海亦完成签到 ,获得积分10
1分钟前
打打应助烟消云散采纳,获得10
1分钟前
lelelelele完成签到 ,获得积分10
1分钟前
1分钟前
TGM_Hedwig发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763972
求助须知:如何正确求助?哪些是违规求助? 5546315
关于积分的说明 15405710
捐赠科研通 4899453
什么是DOI,文献DOI怎么找? 2635579
邀请新用户注册赠送积分活动 1583766
关于科研通互助平台的介绍 1538872