亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transition Layer Thickness Control in Additive-Assist Electroplated Nanotwin Copper

材料科学 电解质 镀铜 电迁移 粒度 电镀 沉积(地质) 电导率 图层(电子) 复合材料 冶金 电极 化学 地质学 古生物学 物理化学 沉积物
作者
Stream Chung,Yao‐Tsung Chen,Zong-Cyuan Chen
出处
期刊:Meeting abstracts 卷期号:MA2018-02 (33): 1138-1138 被引量:1
标识
DOI:10.1149/ma2018-02/33/1138
摘要

Unidirectional (111) nanotwin copper has shown exceptional performance such as thermal stability, mechanical strength, fatigueless behavior, electromigration resistance, electric conductivity, low bonding temperature, and ultra-large grain growth. These unique properties make it a promising solution to several IC applications including fine line RDL in fan-out WLP, copper direct bond in 3D IC vertical interconnect, high conductivity Cu interconnect for VLSI etc. Both electrochemical deposition and physical vapor deposition are able to form such microstructure, and electrochemical deposition is considered the suitable production method in terms of process flexibility, throughput, and overall cost. Direct current was successfully applied to nanotwin copper formation in many reports, but the common feature of these tests is using low or no acid electrolyte with pH around 1. This approach greatly hinders the industrial implementation because of poor deposit uniformity from low electrolyte conductivity. Pulse plating with low duty cycle was also tried, and able to produce nanotwin in high acid electrolyte. However, throughput and hardware cost are the downside of this method. Another approach is DC plating with additives of crystal plane adsorption selectivity, and then electrolyte acid concentration over 100g/L could be used to form nanotwin copper. During the preferred orientation grain development, a micrometer transition layer between non-nanotwin substrate and columnar nanotwin grain is formed. The transition layer thickness is found sensitive to substrate copper grain orientation as well as electrolyte acid concentration, and may dominate the material property when overall deposition thickness reduces in fine line RDL application. In order to reduce the transition layer thickness, two additive modification approaches are demonstrated in this paper. The first one is to increase columnar grain nucleation density by reducing nucleation overpotential, and the second one is to increase lateral grain growth rate by increasing nucleation overpotential. The prior approach results in smaller columnar grain diameter, and the later one results in larger columnar grain diameter. Both approaches are effective in reducing transition layer thickness. Figure Caption: Transition layer boundary represented by green dash line on TiW/Cu substrate. (a) thick, irregular transition layer with nt-Cu additive. (b) thin transition layer with modified nt-Cu additive increasing substrate nucleation sites. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
drhwang完成签到,获得积分10
1秒前
3秒前
笨笨亦凝发布了新的文献求助30
8秒前
笨笨亦凝完成签到,获得积分20
45秒前
牧沛凝完成签到 ,获得积分10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
kakuna发布了新的文献求助40
1分钟前
1分钟前
StevenWu1发布了新的文献求助10
1分钟前
英姑应助ddd采纳,获得10
1分钟前
1分钟前
1分钟前
Orange应助黑球采纳,获得10
2分钟前
黑球完成签到,获得积分10
2分钟前
2分钟前
黑球发布了新的文献求助10
2分钟前
2分钟前
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
Kz发布了新的文献求助10
3分钟前
研友_VZG7GZ应助Kz采纳,获得10
3分钟前
celinewu完成签到,获得积分10
3分钟前
3分钟前
3分钟前
ddd发布了新的文献求助10
3分钟前
Perry完成签到,获得积分10
4分钟前
风雪丽人完成签到,获得积分10
4分钟前
4分钟前
zsmj23完成签到 ,获得积分0
5分钟前
5分钟前
6分钟前
福同学完成签到,获得积分10
6分钟前
7分钟前
科目三应助科研通管家采纳,获得10
7分钟前
共享精神应助科研通管家采纳,获得30
7分钟前
大个应助twk采纳,获得10
7分钟前
瓦力完成签到 ,获得积分10
7分钟前
7分钟前
twk发布了新的文献求助10
7分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729118
求助须知:如何正确求助?哪些是违规求助? 3274275
关于积分的说明 9984852
捐赠科研通 2989521
什么是DOI,文献DOI怎么找? 1640551
邀请新用户注册赠送积分活动 779249
科研通“疑难数据库(出版商)”最低求助积分说明 748141