受体
钙敏感受体
内科学
细胞生物学
内分泌学
化学
下调和上调
白细胞介素
生物
钙
细胞因子
医学
钙代谢
生物化学
基因
作者
Min Wu,Sisi Wang,Jingyuan Cao,Tao‐Tao Tang,Min Gao,Kun‐Ling Ma,Bi‐Cheng Liu
摘要
The mechanisms that underlie the profibrotic effect of interleukin (IL)-1β are complicated and not fully understood. Recent evidence has suggested the involvement of the calcium-sensing receptor (CaSR) in tubular injury. Therefore, the current study aimed to investigate whether CaSR mediates IL-1β-induced collagen expression in cultured mouse inner medullary collecting duct cells (mIMCD3) and to determine the possible downstream signaling effector. The results showed that IL-1β significantly upregulated the expression of type I and III collagens in a concentration- and time-dependent manner. Moreover, CaSR was expressed in mIMCD3 cells, and its expression was increased by increasing the concentrations and times of IL-1β treatment. Selective inhibitors (Calhex231 or NPS2143) or the siRNA of CaSR attenuated the enhanced expression of type I and III collagens. Furthermore, IL-1β increased nuclear β-catenin protein levels and decreased cytoplasmic β-catenin expression in cells. In contrast, blockage of CaSR by the pharmacological antagonists or siRNA could partially attenuate such changes in the IL-1β-induced nuclear translocation of β-catenin. DKK1, an inhibitor of β-catenin nuclear translocation, further inhibited the expression of type I and III collagens in cells treated with IL-1β plus CaSR antagonist. In summary, these data demonstrated that IL-1β-induced collagen I and III expressions in collecting duct cells might be partially mediated by CaSR and the downstream nuclear translocation of β-catenin.
科研通智能强力驱动
Strongly Powered by AbleSci AI