Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks

计算机视觉 隐藏字幕 联营
作者
Aditya Chattopadhyay,Anirban Sarkar,Prantik Howlader,Vineeth N Balasubramanian
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:173
标识
DOI:10.1109/wacv.2018.00097
摘要

Over the last decade, Convolutional Neural Network (CNN) models have been highly successful in solving complex vision problems. However, these deep models are perceived as black box methods considering the lack of understanding of their internal functioning. There has been a significant recent interest in developing explainable deep learning models, and this paper is an effort in this direction. Building on a recently proposed method called Grad-CAM, we propose a generalized method called Grad-CAM++ that can provide better visual explanations of CNN model predictions, in terms of better object localization as well as explaining occurrences of multiple object instances in a single image, when compared to state-of-the-art. We provide a mathematical derivation for the proposed method, which uses a weighted combination of the positive partial derivatives of the last convolutional layer feature maps with respect to a specific class score as weights to generate a visual explanation for the corresponding class label. Our extensive experiments and evaluations, both subjective and objective, on standard datasets showed that Grad-CAM++ provides promising human-interpretable visual explanations for a given CNN architecture across multiple tasks including classification, image caption generation and 3D action recognition; as well as in new settings such as knowledge distillation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5433完成签到,获得积分10
1秒前
长乐完成签到,获得积分10
2秒前
研友_VZG7GZ应助AIA7采纳,获得10
2秒前
眼睛大的从雪完成签到,获得积分10
4秒前
今天睡够觉完成签到,获得积分20
4秒前
邱邱完成签到 ,获得积分10
6秒前
务实的绝悟完成签到,获得积分10
7秒前
7秒前
xr完成签到,获得积分10
8秒前
岁月如歌完成签到,获得积分10
10秒前
11秒前
舒适涵山完成签到,获得积分10
12秒前
13秒前
13秒前
123mmmm发布了新的文献求助10
14秒前
15秒前
15秒前
考拉发布了新的文献求助10
17秒前
AIA7完成签到,获得积分10
18秒前
18秒前
小木子发布了新的文献求助10
20秒前
20秒前
自觉的凛发布了新的文献求助10
20秒前
浏阳河发布了新的文献求助10
23秒前
暮天修竹发布了新的文献求助30
24秒前
Hello应助123mmmm采纳,获得10
24秒前
salty完成签到 ,获得积分10
24秒前
顾矜应助xr采纳,获得10
27秒前
lalala发布了新的文献求助10
27秒前
Rainbow完成签到 ,获得积分10
27秒前
无住生心完成签到,获得积分10
29秒前
汉堡包应助浏阳河采纳,获得10
30秒前
友好问凝发布了新的文献求助10
31秒前
机灵的成协完成签到,获得积分10
32秒前
考拉完成签到 ,获得积分10
32秒前
大方忆秋完成签到,获得积分10
33秒前
神勇的晟睿完成签到,获得积分10
33秒前
sdfwsdfsd完成签到,获得积分10
35秒前
GreenDuane完成签到 ,获得积分0
41秒前
Aoopiy完成签到,获得积分10
42秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795870
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626274
版权声明 601176