TADS: Learning Time-Aware Scheduling Policy with Dyna-Style Planning for Spaced Repetition

计算机科学 强化学习 地铁列车时刻表 调度(生产过程) 利用 重复(修辞手法) 人工智能 机器学习 数学优化 数学 计算机安全 语言学 操作系统 哲学
作者
Zhengyu Yang,Jian Shen,Yunfei Liu,Yang Yang,Weinan Zhang,Yong Yu
标识
DOI:10.1145/3397271.3401316
摘要

Spaced repetition technique aims at improving long-term memory retention for human students by exploiting repeated, spaced reviews of learning contents. The study of spaced repetition focuses on designing an optimal policy to schedule the learning contents. To the best of our knowledge, none of the existing methods based on reinforcement learning take into account the varying time intervals between two adjacent learning events of the student, which, however, are essential to determine real-world schedule. In this paper, we aim to learn a scheduling policy that fully exploits the varying time interval information with high sample efficiency. We propose the Time-Aware scheduler with Dyna-Style planning (TADS) approach: a sample-efficient reinforcement learning framework for realistic spaced repetition. TADS learns a Time-LSTM policy to select an optimal content according to the student's whole learning history and the time interval since the last learning event. Besides, Dyna-style planning is integrated into TADS to further improve the sample efficiency. We evaluate our approach on three environments built from synthetic data and real-world data based on well-recognized cognitive models. Empirical results demonstrate that TADS achieves superior performance against state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助甜美冰蓝采纳,获得30
1秒前
1秒前
1秒前
万能图书馆应助37采纳,获得10
2秒前
2秒前
辞稚发布了新的文献求助10
2秒前
七七发布了新的文献求助10
3秒前
3秒前
3秒前
Ava应助纯情母蟑螂采纳,获得10
3秒前
旺旺完成签到 ,获得积分10
4秒前
4秒前
Lucas应助xiaohan采纳,获得10
4秒前
4秒前
982289172发布了新的文献求助10
5秒前
wtt123完成签到,获得积分10
5秒前
王金霞完成签到,获得积分10
5秒前
打打应助zhengzengpeng采纳,获得10
5秒前
111完成签到,获得积分10
5秒前
赘婿应助王泰一采纳,获得30
5秒前
八月中稿完成签到 ,获得积分10
6秒前
赘婿应助潇湘阁我爱吃采纳,获得10
6秒前
Gong发布了新的文献求助10
6秒前
Ava应助sube采纳,获得10
6秒前
Kurans发布了新的文献求助10
6秒前
wanxiqianxia完成签到,获得积分10
6秒前
7秒前
云纳完成签到,获得积分10
7秒前
笨笨的灵竹完成签到,获得积分20
7秒前
张磊发布了新的文献求助10
8秒前
聪明静柏完成签到 ,获得积分10
8秒前
小石头完成签到,获得积分0
8秒前
丘奇发布了新的文献求助10
8秒前
8秒前
79999完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
lemon完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483532
求助须知:如何正确求助?哪些是违规求助? 4584237
关于积分的说明 14395715
捐赠科研通 4513936
什么是DOI,文献DOI怎么找? 2473733
邀请新用户注册赠送积分活动 1459777
关于科研通互助平台的介绍 1433177