矿化(土壤科学)
表土
草原
底土
环境科学
土壤碳
土壤水分
土壤有机质
农学
土壤科学
草地退化
生物
作者
Yanfu Bai,Lina Ma,A. Allan Degen,Muhammad Rafiq,Yakov Kuzyakov,Jingxue Zhao,Rui Zhang,Tao Zhang,Wenyin Wang,Xiao Gang Li,Ruijun Long,Zhanhuan Shang
摘要
Abstract Soil nutrient contents and organic carbon (C) stability are key indicators for restoration of degraded grassland. However, the effects of long‐term active restoration of extremely degraded grassland on soil parameters have been equivocal. The aims of this study were to evaluate the impact of active restoration of degraded alpine grassland on: (a) soil organic matter (SOM) mineralization; and (b) the importance of biotic factors for temperature sensitivity ( Q 10 ) of SOM mineralization. Soils were sampled from intact, degraded and restored alpine grasslands at altitudes ranging between 3,900 and 4,200 m on the Tibetan Plateau. The samples were incubated at 5, 15 and 25°C, and Q 10 values of SOM mineralization were determined. Structural equation modeling was used to evaluate the importance of vegetation, soil physico‐chemical properties and microbial parameters for Q 10 regulation. The Q 10 of N mineralization was similar among intact, degraded and restored soils (0.84–1.24) and was higher in topsoil (1.09) than in subsoil (0.92). The best predictive factor of CO 2 ‐ Q 10 for intact grassland was microbial biomass, for degraded grassland was basal microbial respiration, and for restored grassland was soil bulk density. Restoration by planting vegetation decreased the Q 10 of SOM mineralization as soil bulk density, the most important negative predictor, increased in restored grassland. The Q 10 of SOM mineralization in topsoil was 14% higher than in subsoil because of higher microbial abundance and exo‐enzyme activities. The NH 4 + content was greatest in intact soil, while NO 3 − content was greatest in degraded soil. The SOM mineralization rate decreased with grassland degradation and increased after long‐term (>10 years) restoration. In conclusion, extremely degraded grassland needs proper long‐term management in active restoration projects, especially for improvement of soil nutrients in a harsh environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI