已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Seismic data interpolation using a POCS-guided deep image prior

深度学习 卷积神经网络 正规化(语言学) 先验概率 工作流程 插值(计算机图形学) 计算机科学 深层神经网络 人工智能 图像(数学) 数据库 贝叶斯概率
作者
Min Jun Park,Joseph Jennings,Bob Clapp,Biondo Biondi
出处
期刊:Seg Technical Program Expanded Abstracts [Society of Exploration Geophysicists]
被引量:15
标识
DOI:10.1190/segam2020-3427320.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2020Seismic data interpolation using a POCS-guided deep image priorAuthors: Min Jun ParkJoseph JenningsBob ClappBiondo BiondiMin Jun ParkStanford UniversitySearch for more papers by this author, Joseph JenningsStanford UniversitySearch for more papers by this author, Bob ClappStanford UniversitySearch for more papers by this author, and Biondo BiondiStanford UniversitySearch for more papers by this authorhttps://doi.org/10.1190/segam2020-3427320.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractWe present an algorithm for seismic data interpolation that combines the use of a deep image prior (DIP) and projection onto convex sets (POCS). Deep image priors form part of an optimization problem in which they reparameterize the interpolated data as the output of a convolutional network. While they are able to provide accurate reconstructions of seismic data without the need for any training data, they tend to suffer when large gaps are present in the missing data. We observe significant improvements in the reconstructed data when a POCS regularization term is introduced to the DIP. We demonstrate the improvements of our approach on both synthetic and field data.Presentation Date: Wednesday, October 14, 2020Session Start Time: 8:30 AMPresentation Time: 10:10 AMLocation: 360DPresentation Type: OralKeywords: interpolation, reconstruction, machine learningPermalink: https://doi.org/10.1190/segam2020-3427320.1FiguresReferencesRelatedDetailsCited byImproving sparse representation with deep learning: A workflow for separating strong background interferenceDawei Liu, Wei Wang, Xiaokai Wang, Zhensheng Shi, Mauricio D. Sacchi, and Wenchao Chen27 December 2022 | GEOPHYSICS, Vol. 88, No. 1Self-Attention Deep Image Prior Network for Unsupervised 3-D Seismic Data EnhancementIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Self-Supervised Deep Learning to Reconstruct Seismic Data With Consecutively Missing TracesIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Self-Supervised Learning for Efficient Antialiasing Seismic Data InterpolationIEEE Transactions on Geoscience and Remote Sensing, Vol. 60 SEG Technical Program Expanded Abstracts 2020ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2020 Pages: 3887 publication data© 2020 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 30 Sep 2020 CITATION INFORMATION Min Jun Park, Joseph Jennings, Bob Clapp, and Biondo Biondi, (2020), "Seismic data interpolation using a POCS-guided deep image prior," SEG Technical Program Expanded Abstracts : 3154-3158. https://doi.org/10.1190/segam2020-3427320.1 Plain-Language Summary Keywordsinterpolationreconstructionmachine learningPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
嘻哈hang发布了新的文献求助10
2秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
田様应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
5秒前
嘻哈hang完成签到,获得积分10
8秒前
11秒前
上官完成签到 ,获得积分10
12秒前
12秒前
传奇3应助科研进化中采纳,获得10
14秒前
18秒前
饱满豌豆发布了新的文献求助20
19秒前
popooo发布了新的文献求助70
20秒前
Delight完成签到 ,获得积分10
20秒前
绾妤完成签到 ,获得积分0
21秒前
lcarus完成签到,获得积分10
21秒前
李嘉悦完成签到,获得积分10
22秒前
钮钴禄甄嬛完成签到,获得积分20
25秒前
sl完成签到 ,获得积分10
26秒前
27秒前
luqong完成签到,获得积分10
27秒前
27秒前
jimmy发布了新的文献求助10
29秒前
潮鸣完成签到 ,获得积分10
29秒前
Lucky.完成签到 ,获得积分0
30秒前
nannan发布了新的文献求助20
31秒前
manmanzhong完成签到 ,获得积分10
33秒前
俊逸海豚完成签到 ,获得积分10
34秒前
Lucas应助lcarus采纳,获得10
34秒前
binhunu完成签到,获得积分10
36秒前
FL完成签到 ,获得积分10
39秒前
41秒前
LIVE完成签到,获得积分10
41秒前
jimmy完成签到,获得积分10
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965486
求助须知:如何正确求助?哪些是违规求助? 3510787
关于积分的说明 11155074
捐赠科研通 3245247
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804171