Synthesis of Sulfide Solid Electrolytes through the Liquid Phase: Optimization of the Preparation Conditions

结晶度 快离子导体 离子电导率 硫化物 离子液体 电解质 材料科学 电导率 化学工程 拉曼光谱 退火(玻璃) 化学 有机化学 物理化学 冶金 电极 复合材料 物理 光学 工程类 催化作用
作者
Kentaro Yamamoto,Masakuni Takahashi,Koji Ohara,Nguyễn Hữu Huy Phúc,Seung-Hoon Yang,Toshiki Watanabe,Tomoki Uchiyama,Atsushi Sakuda,Akitoshi Hayashi,Masahiro Tatsumisago,Hiroyuki Muto,Atsunori Matsuda,Yoshiharu Uchimoto
出处
期刊:ACS omega [American Chemical Society]
卷期号:5 (40): 26287-26294 被引量:32
标识
DOI:10.1021/acsomega.0c04307
摘要

All-solid-state lithium batteries using inorganic sulfide solid electrolytes have good safety properties and high rate capabilities as expected for a next-generation battery. Presently, conventional preparation methods such as mechanical milling and/or solid-phase synthesis need a long time to provide a small amount of the product, and they have difficult in supplying a sufficient amount to meet the demand. Hence, liquid-phase synthesis methods have been developed for large-scale synthesis. However, the ionic conductivity of sulfide solid electrolytes prepared via liquid-phase synthesis is typically lower than that prepared via solid-phase synthesis. In this study, we have controlled three factors: (1) shaking time, (2) annealing temperature, and (3) annealing time. The factors influencing lithium ionic conductivity of Li3PS4 prepared via liquid-phase synthesis were quantitatively evaluated using high-energy X-ray diffraction (XRD) measurement coupled with pair distribution function (PDF) analysis. It was revealed from PDF analysis that the amount of Li2S that cannot be detected by Raman spectroscopy or XRD decreased the ionic conductivity. Furthermore, it was revealed that the ionic conductivity of Li3PS4 is dominated by other parameters, such as remaining solvent in the sample and high crystallinity of the sample.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiaaaaa发布了新的文献求助10
1秒前
爱听歌嚓茶完成签到,获得积分10
2秒前
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
asdfzxcv应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
酷波er应助杨倩采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
annabelle发布了新的文献求助10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
asdfzxcv应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
大个应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
1234发布了新的文献求助10
4秒前
Zhongliang_Dong完成签到,获得积分20
4秒前
李健的小迷弟应助bxdrl采纳,获得10
6秒前
6秒前
7秒前
dlw完成签到,获得积分10
7秒前
小苏完成签到 ,获得积分10
7秒前
了一李发布了新的文献求助30
8秒前
8秒前
9秒前
果果完成签到,获得积分10
9秒前
无情墨镜完成签到,获得积分10
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683