亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory

Softmax函数 卷积神经网络 镜像 侵略 人工智能 计算机科学 集合(抽象数据类型) 深度学习 帧(网络) 期限(时间) 模式识别(心理学) 心理学 发展心理学 沟通 电信 物理 量子力学 程序设计语言
作者
Chen Chen,Weixing Zhu,Juan P. Steibel,Janice M. Siegford,Kaitlin Elizabeth Wurtz,Junjie Han,Tomás Norton
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:169: 105166-105166 被引量:102
标识
DOI:10.1016/j.compag.2019.105166
摘要

Aggression is considered as a major animal welfare problem in commercial pig farming. The aim of this study is to develop a deep learning method based on convolutional neural network (CNN) and long short-term memory (LSTM) to recognise aggressive episodes of pigs. Compared to previous studies of pig behaviours based on deep learning, this study directly process video episodes rather than individual frames. In the experiment, nursery pigs (8/pen) were mixed for 3 days and then 8 h of video was recorded in each day. From these videos, 600 aggressive 2 s-episodes were manually selected and then augmented into 2400 episodes by using horizontal, vertical and diagonal mirroring. From the videos, 2400 non-aggressive 2 s-episodes were also manually selected. 80% of the data were randomly allocated as training set and the remaining 20% as validation set. Firstly, the CNN architecture VGG-16 was used to extract spatial features. These features were then input into LSTM framework to further extract temporal features. Through fully connected layer, the prediction function Softmax was finally used to determine if the current episode is aggression or non-aggression. Using the proposed method, aggressive episodes could be recognised with an accuracy of 97.2%. This result indicates that this method can be used to recognise aggressive episodes of pigs. Additionally, this paper further investigates the validity of this method under the conditions of skipping frames and reducing the episode length. The results show that a frame skipping approach whereby 30 fps is reduced into 15 fps within each 2 s-episode can improve the accuracy into 98.4% and halve the total running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热带蚂蚁完成签到 ,获得积分10
4秒前
19秒前
ZL关闭了ZL文献求助
36秒前
桥西小河完成签到 ,获得积分10
47秒前
af发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
冯冯完成签到,获得积分10
1分钟前
半夏完成签到,获得积分10
1分钟前
共享精神应助af采纳,获得10
1分钟前
1分钟前
老橘子发布了新的文献求助30
1分钟前
夏柯完成签到,获得积分10
1分钟前
无花果应助幸福的逍遥采纳,获得10
2分钟前
迅速初柳发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
af发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
ding应助科研通管家采纳,获得10
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
小泉完成签到 ,获得积分10
3分钟前
af完成签到,获得积分10
3分钟前
3分钟前
齐天大圣完成签到,获得积分10
3分钟前
gszy1975完成签到,获得积分10
3分钟前
迅速初柳发布了新的文献求助10
3分钟前
刘刘完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Nyan发布了新的文献求助10
3分钟前
4分钟前
hhl完成签到,获得积分10
4分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746872
求助须知:如何正确求助?哪些是违规求助? 5439957
关于积分的说明 15355990
捐赠科研通 4886836
什么是DOI,文献DOI怎么找? 2627476
邀请新用户注册赠送积分活动 1575917
关于科研通互助平台的介绍 1532711