Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory

Softmax函数 卷积神经网络 镜像 侵略 人工智能 计算机科学 集合(抽象数据类型) 深度学习 帧(网络) 期限(时间) 模式识别(心理学) 心理学 发展心理学 沟通 电信 物理 量子力学 程序设计语言
作者
Chen Chen,Weixing Zhu,Juan P. Steibel,Janice M. Siegford,Kaitlin Elizabeth Wurtz,Junjie Han,Tomás Norton
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:169: 105166-105166 被引量:102
标识
DOI:10.1016/j.compag.2019.105166
摘要

Aggression is considered as a major animal welfare problem in commercial pig farming. The aim of this study is to develop a deep learning method based on convolutional neural network (CNN) and long short-term memory (LSTM) to recognise aggressive episodes of pigs. Compared to previous studies of pig behaviours based on deep learning, this study directly process video episodes rather than individual frames. In the experiment, nursery pigs (8/pen) were mixed for 3 days and then 8 h of video was recorded in each day. From these videos, 600 aggressive 2 s-episodes were manually selected and then augmented into 2400 episodes by using horizontal, vertical and diagonal mirroring. From the videos, 2400 non-aggressive 2 s-episodes were also manually selected. 80% of the data were randomly allocated as training set and the remaining 20% as validation set. Firstly, the CNN architecture VGG-16 was used to extract spatial features. These features were then input into LSTM framework to further extract temporal features. Through fully connected layer, the prediction function Softmax was finally used to determine if the current episode is aggression or non-aggression. Using the proposed method, aggressive episodes could be recognised with an accuracy of 97.2%. This result indicates that this method can be used to recognise aggressive episodes of pigs. Additionally, this paper further investigates the validity of this method under the conditions of skipping frames and reducing the episode length. The results show that a frame skipping approach whereby 30 fps is reduced into 15 fps within each 2 s-episode can improve the accuracy into 98.4% and halve the total running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小李子发布了新的文献求助10
1秒前
1q1q完成签到 ,获得积分10
1秒前
拼搏灵安完成签到,获得积分10
2秒前
温婉的曼冬完成签到,获得积分10
2秒前
科研通AI5应助懒人采纳,获得10
2秒前
小小冯发布了新的文献求助10
3秒前
3秒前
李某某发布了新的文献求助10
4秒前
4秒前
科研通AI6应助如意翡翠采纳,获得10
5秒前
5秒前
溆玉碎兰笑完成签到 ,获得积分10
6秒前
能闭嘴吗完成签到 ,获得积分10
6秒前
7秒前
bkagyin应助温婉的曼冬采纳,获得10
7秒前
Sch完成签到,获得积分10
7秒前
JamesTYD发布了新的文献求助10
8秒前
氨气完成签到 ,获得积分10
8秒前
学术搭子发布了新的文献求助10
8秒前
9秒前
啦啦啦啦啦完成签到,获得积分10
9秒前
pping完成签到,获得积分10
10秒前
可爱的函函应助小小冯采纳,获得10
10秒前
科研通AI5应助谨慎小懒猪采纳,获得10
11秒前
Hello应助虚幻盼晴采纳,获得10
11秒前
Owen应助刘奕采纳,获得10
12秒前
懒人完成签到,获得积分10
13秒前
黄聃发布了新的文献求助10
13秒前
13秒前
NexusExplorer应助ml采纳,获得10
14秒前
平常的秋蝶完成签到,获得积分10
15秒前
螺蛳粉完成签到,获得积分10
17秒前
17秒前
哎咦随风起完成签到,获得积分10
18秒前
18秒前
18秒前
情怀应助任性机器猫采纳,获得10
19秒前
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4969243
求助须知:如何正确求助?哪些是违规求助? 4226417
关于积分的说明 13162704
捐赠科研通 4013780
什么是DOI,文献DOI怎么找? 2196297
邀请新用户注册赠送积分活动 1209551
关于科研通互助平台的介绍 1123640