清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory

Softmax函数 卷积神经网络 镜像 侵略 人工智能 计算机科学 集合(抽象数据类型) 深度学习 帧(网络) 期限(时间) 模式识别(心理学) 心理学 发展心理学 沟通 电信 物理 量子力学 程序设计语言
作者
Chen Chen,Weixing Zhu,Juan P. Steibel,Janice M. Siegford,Kaitlin Elizabeth Wurtz,Junjie Han,Tomás Norton
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:169: 105166-105166 被引量:102
标识
DOI:10.1016/j.compag.2019.105166
摘要

Aggression is considered as a major animal welfare problem in commercial pig farming. The aim of this study is to develop a deep learning method based on convolutional neural network (CNN) and long short-term memory (LSTM) to recognise aggressive episodes of pigs. Compared to previous studies of pig behaviours based on deep learning, this study directly process video episodes rather than individual frames. In the experiment, nursery pigs (8/pen) were mixed for 3 days and then 8 h of video was recorded in each day. From these videos, 600 aggressive 2 s-episodes were manually selected and then augmented into 2400 episodes by using horizontal, vertical and diagonal mirroring. From the videos, 2400 non-aggressive 2 s-episodes were also manually selected. 80% of the data were randomly allocated as training set and the remaining 20% as validation set. Firstly, the CNN architecture VGG-16 was used to extract spatial features. These features were then input into LSTM framework to further extract temporal features. Through fully connected layer, the prediction function Softmax was finally used to determine if the current episode is aggression or non-aggression. Using the proposed method, aggressive episodes could be recognised with an accuracy of 97.2%. This result indicates that this method can be used to recognise aggressive episodes of pigs. Additionally, this paper further investigates the validity of this method under the conditions of skipping frames and reducing the episode length. The results show that a frame skipping approach whereby 30 fps is reduced into 15 fps within each 2 s-episode can improve the accuracy into 98.4% and halve the total running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xue完成签到 ,获得积分10
4秒前
6秒前
CodeCraft应助读书的时候采纳,获得10
7秒前
自然亦凝完成签到,获得积分10
23秒前
科研通AI6应助科研通管家采纳,获得10
41秒前
科研通AI6应助科研通管家采纳,获得10
41秒前
41秒前
科研通AI6应助科研通管家采纳,获得10
41秒前
斯文败类应助科研通管家采纳,获得10
41秒前
43秒前
CipherSage应助读书的时候采纳,获得10
52秒前
Criminology34应助口香糖探长采纳,获得30
1分钟前
汉堡包应助读书的时候采纳,获得10
1分钟前
李健的小迷弟应助linghanlan采纳,获得10
1分钟前
三年三班三井寿完成签到,获得积分10
1分钟前
Orange应助读书的时候采纳,获得30
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
完美世界应助读书的时候采纳,获得10
2分钟前
果酱完成签到,获得积分10
2分钟前
2分钟前
汤圆完成签到 ,获得积分10
2分钟前
linghanlan发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
传奇3应助读书的时候采纳,获得10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
乔杰完成签到 ,获得积分10
3分钟前
方白秋完成签到,获得积分0
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739877
求助须知:如何正确求助?哪些是违规求助? 5390893
关于积分的说明 15340059
捐赠科研通 4882216
什么是DOI,文献DOI怎么找? 2624255
邀请新用户注册赠送积分活动 1572960
关于科研通互助平台的介绍 1529835