Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory

Softmax函数 卷积神经网络 镜像 侵略 人工智能 计算机科学 集合(抽象数据类型) 深度学习 帧(网络) 期限(时间) 模式识别(心理学) 心理学 发展心理学 沟通 电信 物理 量子力学 程序设计语言
作者
Chen Chen,Weixing Zhu,Juan P. Steibel,Janice M. Siegford,Kaitlin Wurtz,Junjie Han,Tomás Norton
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:169: 105166-105166 被引量:64
标识
DOI:10.1016/j.compag.2019.105166
摘要

Aggression is considered as a major animal welfare problem in commercial pig farming. The aim of this study is to develop a deep learning method based on convolutional neural network (CNN) and long short-term memory (LSTM) to recognise aggressive episodes of pigs. Compared to previous studies of pig behaviours based on deep learning, this study directly process video episodes rather than individual frames. In the experiment, nursery pigs (8/pen) were mixed for 3 days and then 8 h of video was recorded in each day. From these videos, 600 aggressive 2 s-episodes were manually selected and then augmented into 2400 episodes by using horizontal, vertical and diagonal mirroring. From the videos, 2400 non-aggressive 2 s-episodes were also manually selected. 80% of the data were randomly allocated as training set and the remaining 20% as validation set. Firstly, the CNN architecture VGG-16 was used to extract spatial features. These features were then input into LSTM framework to further extract temporal features. Through fully connected layer, the prediction function Softmax was finally used to determine if the current episode is aggression or non-aggression. Using the proposed method, aggressive episodes could be recognised with an accuracy of 97.2%. This result indicates that this method can be used to recognise aggressive episodes of pigs. Additionally, this paper further investigates the validity of this method under the conditions of skipping frames and reducing the episode length. The results show that a frame skipping approach whereby 30 fps is reduced into 15 fps within each 2 s-episode can improve the accuracy into 98.4% and halve the total running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
棉籽完成签到 ,获得积分10
1秒前
1秒前
娜娜完成签到,获得积分10
2秒前
2秒前
端己发布了新的文献求助10
4秒前
OvO发布了新的文献求助10
5秒前
cxy发布了新的文献求助10
5秒前
bkagyin应助月亮是甜的采纳,获得10
5秒前
喜东东完成签到,获得积分10
5秒前
6秒前
cocolu应助干净初彤采纳,获得10
6秒前
刘坦苇发布了新的文献求助10
6秒前
7秒前
打打应助称心不尤采纳,获得10
7秒前
7秒前
8秒前
英俊的铭应助huizi采纳,获得10
8秒前
深情安青应助明理的芹菜采纳,获得10
8秒前
一一应助yangxt-iga采纳,获得10
9秒前
10秒前
10秒前
13秒前
14秒前
14秒前
小白发布了新的文献求助10
14秒前
14秒前
科研通AI2S应助nanfeng采纳,获得10
14秒前
李健的小迷弟应助1111采纳,获得10
15秒前
昵称发布了新的文献求助10
16秒前
小马甲应助HS采纳,获得10
16秒前
17秒前
17秒前
花开那年发布了新的文献求助10
20秒前
李爱国应助司空豁采纳,获得10
20秒前
21秒前
调研昵称发布了新的文献求助10
22秒前
景觅波发布了新的文献求助10
23秒前
称心不尤发布了新的文献求助10
24秒前
25秒前
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459437
求助须知:如何正确求助?哪些是违规求助? 3053861
关于积分的说明 9039026
捐赠科研通 2743219
什么是DOI,文献DOI怎么找? 1504698
科研通“疑难数据库(出版商)”最低求助积分说明 695389
邀请新用户注册赠送积分活动 694664