清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory

Softmax函数 卷积神经网络 镜像 侵略 人工智能 计算机科学 集合(抽象数据类型) 深度学习 帧(网络) 期限(时间) 模式识别(心理学) 心理学 发展心理学 沟通 电信 物理 量子力学 程序设计语言
作者
Chen Chen,Weixing Zhu,Juan P. Steibel,Janice M. Siegford,Kaitlin Wurtz,Junjie Han,Tomás Norton
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:169: 105166-105166 被引量:64
标识
DOI:10.1016/j.compag.2019.105166
摘要

Aggression is considered as a major animal welfare problem in commercial pig farming. The aim of this study is to develop a deep learning method based on convolutional neural network (CNN) and long short-term memory (LSTM) to recognise aggressive episodes of pigs. Compared to previous studies of pig behaviours based on deep learning, this study directly process video episodes rather than individual frames. In the experiment, nursery pigs (8/pen) were mixed for 3 days and then 8 h of video was recorded in each day. From these videos, 600 aggressive 2 s-episodes were manually selected and then augmented into 2400 episodes by using horizontal, vertical and diagonal mirroring. From the videos, 2400 non-aggressive 2 s-episodes were also manually selected. 80% of the data were randomly allocated as training set and the remaining 20% as validation set. Firstly, the CNN architecture VGG-16 was used to extract spatial features. These features were then input into LSTM framework to further extract temporal features. Through fully connected layer, the prediction function Softmax was finally used to determine if the current episode is aggression or non-aggression. Using the proposed method, aggressive episodes could be recognised with an accuracy of 97.2%. This result indicates that this method can be used to recognise aggressive episodes of pigs. Additionally, this paper further investigates the validity of this method under the conditions of skipping frames and reducing the episode length. The results show that a frame skipping approach whereby 30 fps is reduced into 15 fps within each 2 s-episode can improve the accuracy into 98.4% and halve the total running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美梨愁完成签到 ,获得积分10
2秒前
Tong完成签到,获得积分0
8秒前
21秒前
鸣笛应助CY采纳,获得30
33秒前
43秒前
43秒前
Rayoo发布了新的文献求助10
48秒前
DrLuffy完成签到 ,获得积分10
51秒前
852应助Rayoo采纳,获得10
58秒前
1分钟前
liu完成签到,获得积分10
1分钟前
sxx发布了新的文献求助10
1分钟前
1分钟前
瘦瘦发布了新的文献求助10
1分钟前
眯眯眼的安雁完成签到 ,获得积分10
1分钟前
piaoaxi完成签到 ,获得积分10
1分钟前
wjx完成签到 ,获得积分10
1分钟前
louyu完成签到 ,获得积分0
1分钟前
1分钟前
甜美砖家完成签到 ,获得积分10
1分钟前
1分钟前
tan发布了新的文献求助20
1分钟前
1分钟前
荀万声完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
桐桐应助科研通管家采纳,获得10
2分钟前
风清扬应助科研通管家采纳,获得10
2分钟前
2分钟前
凉面完成签到 ,获得积分10
2分钟前
默默完成签到 ,获得积分10
2分钟前
妇产科医生完成签到 ,获得积分10
2分钟前
胡国伦完成签到 ,获得积分10
3分钟前
whuhustwit完成签到,获得积分10
3分钟前
xdd完成签到 ,获得积分10
3分钟前
3分钟前
sxx完成签到,获得积分10
3分钟前
3分钟前
cqmuluo发布了新的文献求助30
3分钟前
昔昔完成签到 ,获得积分10
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495262
关于积分的说明 11076012
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839