Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory

Softmax函数 卷积神经网络 镜像 侵略 人工智能 计算机科学 集合(抽象数据类型) 深度学习 帧(网络) 期限(时间) 模式识别(心理学) 心理学 发展心理学 沟通 电信 物理 量子力学 程序设计语言
作者
Chen Chen,Weixing Zhu,Juan P. Steibel,Janice M. Siegford,Kaitlin Elizabeth Wurtz,Junjie Han,Tomás Norton
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:169: 105166-105166 被引量:102
标识
DOI:10.1016/j.compag.2019.105166
摘要

Aggression is considered as a major animal welfare problem in commercial pig farming. The aim of this study is to develop a deep learning method based on convolutional neural network (CNN) and long short-term memory (LSTM) to recognise aggressive episodes of pigs. Compared to previous studies of pig behaviours based on deep learning, this study directly process video episodes rather than individual frames. In the experiment, nursery pigs (8/pen) were mixed for 3 days and then 8 h of video was recorded in each day. From these videos, 600 aggressive 2 s-episodes were manually selected and then augmented into 2400 episodes by using horizontal, vertical and diagonal mirroring. From the videos, 2400 non-aggressive 2 s-episodes were also manually selected. 80% of the data were randomly allocated as training set and the remaining 20% as validation set. Firstly, the CNN architecture VGG-16 was used to extract spatial features. These features were then input into LSTM framework to further extract temporal features. Through fully connected layer, the prediction function Softmax was finally used to determine if the current episode is aggression or non-aggression. Using the proposed method, aggressive episodes could be recognised with an accuracy of 97.2%. This result indicates that this method can be used to recognise aggressive episodes of pigs. Additionally, this paper further investigates the validity of this method under the conditions of skipping frames and reducing the episode length. The results show that a frame skipping approach whereby 30 fps is reduced into 15 fps within each 2 s-episode can improve the accuracy into 98.4% and halve the total running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助kjdgahdg采纳,获得10
刚刚
爆米花应助Snoopy采纳,获得10
刚刚
skyla完成签到,获得积分20
1秒前
科研通AI6应助啊这采纳,获得10
2秒前
esteem完成签到,获得积分10
3秒前
婷婷发布了新的文献求助10
3秒前
4秒前
4秒前
77发布了新的文献求助10
4秒前
111111完成签到,获得积分10
5秒前
Z2关注了科研通微信公众号
6秒前
思源应助psj采纳,获得10
6秒前
火星上的冰夏完成签到,获得积分10
6秒前
青辞198完成签到,获得积分10
6秒前
7秒前
7秒前
情怀应助辛勤尔珍采纳,获得10
7秒前
妈宝女完成签到,获得积分10
7秒前
毕双洲完成签到,获得积分10
8秒前
dmoney发布了新的文献求助10
8秒前
张泽纳完成签到,获得积分10
8秒前
宗晓曼完成签到 ,获得积分10
9秒前
情怀应助SDD采纳,获得10
9秒前
小坚果发布了新的文献求助10
9秒前
科研狗完成签到,获得积分10
10秒前
彭彭发布了新的文献求助30
10秒前
尤珩完成签到,获得积分10
11秒前
LLLL发布了新的文献求助20
11秒前
11秒前
wuyi发布了新的文献求助10
11秒前
11秒前
11秒前
万里发布了新的文献求助10
13秒前
追寻惜萱完成签到,获得积分10
13秒前
14秒前
尤珩发布了新的文献求助10
14秒前
14秒前
充电宝应助友好亚男采纳,获得10
15秒前
吴彦祖发布了新的文献求助10
15秒前
香蕉觅云应助dmoney采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589486
求助须知:如何正确求助?哪些是违规求助? 4674213
关于积分的说明 14792351
捐赠科研通 4628515
什么是DOI,文献DOI怎么找? 2532297
邀请新用户注册赠送积分活动 1500964
关于科研通互助平台的介绍 1468454