Flexible Distribution-Based Regression Models for Count Data: Application to Medical Diagnosis

计算机科学 回归分析 回归 多项式分布 数据挖掘 机器学习 多元统计 预测建模 计数数据 人工智能 Dirichlet分布 多元自适应回归样条 多项式logistic回归 统计 贝叶斯多元线性回归 数学 数学分析 泊松分布 边值问题
作者
Pantea Koochemeshkian,Nuha Zamzami,Nizar Bouguila
出处
期刊:Cybernetics and Systems [Informa]
卷期号:51 (4): 442-466 被引量:12
标识
DOI:10.1080/01969722.2020.1758464
摘要

Data mining techniques have been successfully utilized in different applications of significant fields, including medical research. With the wealth of data available within the health-care systems, there is a lack of practical analysis tools to discover hidden relationships and trends in data. The complexity of medical data that is unfavorable for most models is a considerable challenge in prediction. The ability of a model to perform accurately and efficiently in disease diagnosis is extremely significant. Thus, the model must be selected to fit the data better, such that the learning from previous data is most efficient, and the diagnosis of the disease is highly accurate. This work is motivated by the limited number of regression analysis tools for multivariate counts in the literature. We propose two regression models for count data based on flexible distributions, namely, the multinomial Beta-Liouville and multinomial scaled Dirichlet, and evaluated the proposed models in the problem of disease diagnosis. The performance is evaluated based on the accuracy of the prediction which depends on the nature and complexity of the dataset. Our results show the efficiency of the two proposed regression models where the prediction performance of both models is competitive to other previously used regression models for count data and to the best results in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助linciko采纳,获得10
1秒前
yututu发布了新的文献求助10
1秒前
2秒前
梅倪完成签到,获得积分10
2秒前
汉堡包应助111111zx111采纳,获得10
2秒前
doclarrin发布了新的文献求助10
2秒前
科目三应助yihua采纳,获得10
3秒前
LL发布了新的文献求助10
3秒前
3秒前
Lucas应助温婉的荷花采纳,获得10
3秒前
文艺访卉完成签到,获得积分10
4秒前
lauraaa发布了新的文献求助10
4秒前
飞飞完成签到,获得积分10
4秒前
寰2023发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
无所不能的虫虫完成签到,获得积分10
7秒前
江铭完成签到,获得积分10
7秒前
7秒前
mewmew发布了新的文献求助10
7秒前
充电宝应助菠萝吹雪采纳,获得10
8秒前
xcyyy发布了新的文献求助10
9秒前
鲤鱼千青菜完成签到,获得积分20
9秒前
10秒前
chen完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
coffee发布了新的文献求助20
11秒前
憨憨完成签到,获得积分10
12秒前
学者发布了新的文献求助10
12秒前
乐乐应助MM采纳,获得10
13秒前
13秒前
LIVE完成签到,获得积分10
13秒前
13秒前
善学以致用应助StayGolDay采纳,获得30
14秒前
科目三应助老实的孤丹采纳,获得10
14秒前
CipherSage应助鲤鱼千青菜采纳,获得10
15秒前
科研通AI2S应助明亮萤采纳,获得10
15秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222065
求助须知:如何正确求助?哪些是违规求助? 2870675
关于积分的说明 8171823
捐赠科研通 2537764
什么是DOI,文献DOI怎么找? 1369673
科研通“疑难数据库(出版商)”最低求助积分说明 645558
邀请新用户注册赠送积分活动 619270