亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Flexible Distribution-Based Regression Models for Count Data: Application to Medical Diagnosis

计算机科学 回归分析 回归 多项式分布 数据挖掘 机器学习 多元统计 预测建模 计数数据 人工智能 Dirichlet分布 多元自适应回归样条 多项式logistic回归 统计 贝叶斯多元线性回归 数学 数学分析 泊松分布 边值问题
作者
Pantea Koochemeshkian,Nuha Zamzami,Nizar Bouguila
出处
期刊:Cybernetics and Systems [Taylor & Francis]
卷期号:51 (4): 442-466 被引量:12
标识
DOI:10.1080/01969722.2020.1758464
摘要

Data mining techniques have been successfully utilized in different applications of significant fields, including medical research. With the wealth of data available within the health-care systems, there is a lack of practical analysis tools to discover hidden relationships and trends in data. The complexity of medical data that is unfavorable for most models is a considerable challenge in prediction. The ability of a model to perform accurately and efficiently in disease diagnosis is extremely significant. Thus, the model must be selected to fit the data better, such that the learning from previous data is most efficient, and the diagnosis of the disease is highly accurate. This work is motivated by the limited number of regression analysis tools for multivariate counts in the literature. We propose two regression models for count data based on flexible distributions, namely, the multinomial Beta-Liouville and multinomial scaled Dirichlet, and evaluated the proposed models in the problem of disease diagnosis. The performance is evaluated based on the accuracy of the prediction which depends on the nature and complexity of the dataset. Our results show the efficiency of the two proposed regression models where the prediction performance of both models is competitive to other previously used regression models for count data and to the best results in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈同学完成签到 ,获得积分10
2秒前
lan发布了新的文献求助10
2秒前
chen完成签到 ,获得积分10
13秒前
sci2025opt完成签到 ,获得积分10
17秒前
siv完成签到,获得积分10
39秒前
科研通AI6应助懦弱的丹秋采纳,获得10
47秒前
科研兵发布了新的文献求助10
53秒前
天天快乐应助shee采纳,获得10
59秒前
搜集达人应助科研兵采纳,获得10
1分钟前
insomnia417完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
3分钟前
3分钟前
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
朴素易梦发布了新的文献求助30
3分钟前
3分钟前
3分钟前
4分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
聪明的云完成签到 ,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
朴素易梦完成签到,获得积分10
6分钟前
小马甲应助John采纳,获得10
7分钟前
kuoping完成签到,获得积分0
7分钟前
7分钟前
John完成签到,获得积分10
7分钟前
John发布了新的文献求助10
7分钟前
Ji完成签到,获得积分10
8分钟前
阔达白凡完成签到,获得积分10
8分钟前
桥西小河完成签到 ,获得积分10
8分钟前
TongKY完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596189
求助须知:如何正确求助?哪些是违规求助? 4008262
关于积分的说明 12409027
捐赠科研通 3687193
什么是DOI,文献DOI怎么找? 2032271
邀请新用户注册赠送积分活动 1065522
科研通“疑难数据库(出版商)”最低求助积分说明 950827