Nonstationary Reinforcement Learning: The Blessing of (More) Optimism

后悔 强化学习 马尔可夫决策过程 计算机科学 杠杆(统计) 时差学习 上下界 库存控制 背景(考古学) 数学优化 机器学习 人工智能 马尔可夫过程 数学 运筹学 统计 数学分析 古生物学 生物
作者
Wang Chi Cheung,David Simchi‐Levi,Ruihao Zhu
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (10): 5722-5739 被引量:24
标识
DOI:10.1287/mnsc.2023.4704
摘要

Motivated by operations research applications, such as inventory control and real-time bidding, we consider undiscounted reinforcement learning in Markov decision processes under model uncertainty and temporal drifts. In this setting, both the latent reward and state transition distributions are allowed to evolve over time, as long as their respective total variations, quantified by suitable metrics, do not exceed certain variation budgets. We first develop the sliding window upper confidence bound for reinforcement learning with confidence-widening (SWUCRL2-CW) algorithm and establish its dynamic regret bound when the variation budgets are known. In addition, we propose the bandit-over-reinforcement learning algorithm to adaptively tune the SWUCRL2-CW algorithm to achieve the same dynamic regret bound but in a parameter-free manner (i.e., without knowing the variation budgets). Finally, we conduct numerical experiments to show that our proposed algorithms achieve superior empirical performance compared with existing algorithms. Notably, under nonstationarity, historical data samples may falsely indicate that state transition rarely happens. This thus presents a significant challenge when one tries to apply the conventional optimism in the face of uncertainty principle to achieve a low dynamic regret bound. We overcome this challenge by proposing a novel confidence-widening technique that incorporates additional optimism into our learning algorithms. To extend our theoretical findings, we demonstrate, in the context of single-item inventory control with lost sales, fixed cost, and zero lead time, how one can leverage special structures on the state transition distributions to achieve improved dynamic regret bound in time-varying demand environments. This paper was accepted by J. George Shanthikumar, data science. Funding: The authors acknowledge support from the Massachusetts Institute of Technology (MIT) Data Science Laboratory and the MIT–IBM partnership in artificial intelligence. W. C. Cheung acknowledges support from the Singapore Ministry of Education [Tier 2 Grant MOE-T2EP20121-0012]. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2023.4704 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多情的灵安完成签到,获得积分10
1秒前
独享发布了新的文献求助10
2秒前
耀学菜菜发布了新的文献求助10
2秒前
轩辕寄风完成签到,获得积分0
2秒前
刘仁轨完成签到,获得积分10
3秒前
路寻完成签到,获得积分10
4秒前
DVD发布了新的文献求助10
4秒前
扶苏发布了新的文献求助10
4秒前
温两两完成签到,获得积分10
5秒前
传奇3应助嘟嘟可采纳,获得10
5秒前
健忘过客完成签到 ,获得积分10
5秒前
小石头完成签到,获得积分10
5秒前
李德胜完成签到,获得积分10
5秒前
丰富的微笑完成签到,获得积分10
6秒前
dragonking520发布了新的文献求助10
6秒前
7秒前
xxlbp发布了新的文献求助10
7秒前
三千港完成签到,获得积分10
8秒前
Lucas应助脑残骑士老张采纳,获得10
8秒前
Distance发布了新的文献求助10
8秒前
8秒前
zw完成签到,获得积分10
8秒前
iW完成签到 ,获得积分10
9秒前
笨笨十三完成签到 ,获得积分0
9秒前
11秒前
小麦完成签到,获得积分10
11秒前
shin0324完成签到,获得积分10
11秒前
清新的战斗机完成签到 ,获得积分10
11秒前
悲凉的冬天完成签到 ,获得积分10
12秒前
荀幼旋发布了新的文献求助10
12秒前
12秒前
火火完成签到,获得积分10
12秒前
Danny完成签到,获得积分10
12秒前
爱笑的开山完成签到,获得积分10
12秒前
2025顺顺利利完成签到 ,获得积分10
12秒前
zw发布了新的文献求助10
13秒前
朴实的小萱完成签到 ,获得积分10
13秒前
Yi完成签到,获得积分10
13秒前
13秒前
dsfsd完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950291
求助须知:如何正确求助?哪些是违规求助? 3495773
关于积分的说明 11078786
捐赠科研通 3226217
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800904