已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Nonstationary Reinforcement Learning: The Blessing of (More) Optimism

后悔 强化学习 马尔可夫决策过程 计算机科学 杠杆(统计) 时差学习 上下界 库存控制 背景(考古学) 数学优化 机器学习 人工智能 马尔可夫过程 数学 运筹学 统计 数学分析 古生物学 生物
作者
Wang Chi Cheung,David Simchi‐Levi,Ruihao Zhu
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (10): 5722-5739 被引量:24
标识
DOI:10.1287/mnsc.2023.4704
摘要

Motivated by operations research applications, such as inventory control and real-time bidding, we consider undiscounted reinforcement learning in Markov decision processes under model uncertainty and temporal drifts. In this setting, both the latent reward and state transition distributions are allowed to evolve over time, as long as their respective total variations, quantified by suitable metrics, do not exceed certain variation budgets. We first develop the sliding window upper confidence bound for reinforcement learning with confidence-widening (SWUCRL2-CW) algorithm and establish its dynamic regret bound when the variation budgets are known. In addition, we propose the bandit-over-reinforcement learning algorithm to adaptively tune the SWUCRL2-CW algorithm to achieve the same dynamic regret bound but in a parameter-free manner (i.e., without knowing the variation budgets). Finally, we conduct numerical experiments to show that our proposed algorithms achieve superior empirical performance compared with existing algorithms. Notably, under nonstationarity, historical data samples may falsely indicate that state transition rarely happens. This thus presents a significant challenge when one tries to apply the conventional optimism in the face of uncertainty principle to achieve a low dynamic regret bound. We overcome this challenge by proposing a novel confidence-widening technique that incorporates additional optimism into our learning algorithms. To extend our theoretical findings, we demonstrate, in the context of single-item inventory control with lost sales, fixed cost, and zero lead time, how one can leverage special structures on the state transition distributions to achieve improved dynamic regret bound in time-varying demand environments. This paper was accepted by J. George Shanthikumar, data science. Funding: The authors acknowledge support from the Massachusetts Institute of Technology (MIT) Data Science Laboratory and the MIT–IBM partnership in artificial intelligence. W. C. Cheung acknowledges support from the Singapore Ministry of Education [Tier 2 Grant MOE-T2EP20121-0012]. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2023.4704 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hush发布了新的文献求助10
1秒前
Maymay发布了新的文献求助10
1秒前
Lucas应助光亮鞋子采纳,获得10
1秒前
顾矜应助冷酷的依霜采纳,获得10
3秒前
陆上飞完成签到,获得积分10
4秒前
天天快乐应助hush采纳,获得10
7秒前
15秒前
xcltzh2517完成签到,获得积分10
16秒前
科研小趴菜完成签到 ,获得积分10
19秒前
CCrain完成签到 ,获得积分10
22秒前
伟少完成签到,获得积分10
22秒前
asd1576562308完成签到 ,获得积分10
24秒前
眼睛大的薯片完成签到 ,获得积分10
28秒前
完美世界应助科研通管家采纳,获得10
36秒前
深情安青应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
39秒前
Monicadd完成签到 ,获得积分10
45秒前
49秒前
YBR完成签到 ,获得积分10
50秒前
大个应助pkin采纳,获得10
52秒前
三岁完成签到 ,获得积分10
54秒前
Self-made发布了新的文献求助10
56秒前
qqq完成签到,获得积分10
56秒前
潇洒的凡灵完成签到 ,获得积分10
57秒前
木由发布了新的文献求助10
1分钟前
SSS完成签到,获得积分10
1分钟前
27小天使发布了新的文献求助10
1分钟前
浮游应助honia采纳,获得10
1分钟前
Self-made完成签到,获得积分10
1分钟前
胡茶茶完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
陈欣瑶完成签到 ,获得积分10
1分钟前
1分钟前
白云垛完成签到 ,获得积分10
1分钟前
lklk完成签到,获得积分10
1分钟前
着急的语海完成签到,获得积分10
1分钟前
xl_c完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301583
求助须知:如何正确求助?哪些是违规求助? 4449070
关于积分的说明 13847752
捐赠科研通 4335139
什么是DOI,文献DOI怎么找? 2380126
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341130