Nonstationary Reinforcement Learning: The Blessing of (More) Optimism

后悔 强化学习 马尔可夫决策过程 计算机科学 杠杆(统计) 时差学习 上下界 库存控制 背景(考古学) 数学优化 机器学习 人工智能 马尔可夫过程 数学 运筹学 统计 数学分析 古生物学 生物
作者
Wang Chi Cheung,David Simchi‐Levi,Ruihao Zhu
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (10): 5722-5739 被引量:24
标识
DOI:10.1287/mnsc.2023.4704
摘要

Motivated by operations research applications, such as inventory control and real-time bidding, we consider undiscounted reinforcement learning in Markov decision processes under model uncertainty and temporal drifts. In this setting, both the latent reward and state transition distributions are allowed to evolve over time, as long as their respective total variations, quantified by suitable metrics, do not exceed certain variation budgets. We first develop the sliding window upper confidence bound for reinforcement learning with confidence-widening (SWUCRL2-CW) algorithm and establish its dynamic regret bound when the variation budgets are known. In addition, we propose the bandit-over-reinforcement learning algorithm to adaptively tune the SWUCRL2-CW algorithm to achieve the same dynamic regret bound but in a parameter-free manner (i.e., without knowing the variation budgets). Finally, we conduct numerical experiments to show that our proposed algorithms achieve superior empirical performance compared with existing algorithms. Notably, under nonstationarity, historical data samples may falsely indicate that state transition rarely happens. This thus presents a significant challenge when one tries to apply the conventional optimism in the face of uncertainty principle to achieve a low dynamic regret bound. We overcome this challenge by proposing a novel confidence-widening technique that incorporates additional optimism into our learning algorithms. To extend our theoretical findings, we demonstrate, in the context of single-item inventory control with lost sales, fixed cost, and zero lead time, how one can leverage special structures on the state transition distributions to achieve improved dynamic regret bound in time-varying demand environments. This paper was accepted by J. George Shanthikumar, data science. Funding: The authors acknowledge support from the Massachusetts Institute of Technology (MIT) Data Science Laboratory and the MIT–IBM partnership in artificial intelligence. W. C. Cheung acknowledges support from the Singapore Ministry of Education [Tier 2 Grant MOE-T2EP20121-0012]. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2023.4704 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林悦酥发布了新的文献求助10
1秒前
安静柚子发布了新的文献求助10
2秒前
2秒前
冷珏完成签到,获得积分10
2秒前
Elsa发布了新的文献求助10
2秒前
lilian完成签到,获得积分10
4秒前
4秒前
稀里糊涂完成签到,获得积分10
4秒前
几分之几发布了新的文献求助10
5秒前
aa完成签到,获得积分10
5秒前
我爱吃大西瓜完成签到,获得积分10
5秒前
菜棒发布了新的文献求助30
5秒前
zhao发布了新的文献求助10
6秒前
香蕉诗蕊应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
AneyWinter66应助科研通管家采纳,获得100
6秒前
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
跳跃幼荷应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得30
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
7秒前
AneyWinter66应助科研通管家采纳,获得10
7秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
香蕉诗蕊应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得20
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
7秒前
大个应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601274
求助须知:如何正确求助?哪些是违规求助? 4686785
关于积分的说明 14846051
捐赠科研通 4680352
什么是DOI,文献DOI怎么找? 2539276
邀请新用户注册赠送积分活动 1506151
关于科研通互助平台的介绍 1471283