Nonstationary Reinforcement Learning: The Blessing of (More) Optimism

后悔 强化学习 马尔可夫决策过程 计算机科学 杠杆(统计) 时差学习 上下界 库存控制 背景(考古学) 数学优化 机器学习 人工智能 马尔可夫过程 数学 运筹学 统计 数学分析 古生物学 生物
作者
Wang Chi Cheung,David Simchi‐Levi,Ruihao Zhu
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (10): 5722-5739 被引量:24
标识
DOI:10.1287/mnsc.2023.4704
摘要

Motivated by operations research applications, such as inventory control and real-time bidding, we consider undiscounted reinforcement learning in Markov decision processes under model uncertainty and temporal drifts. In this setting, both the latent reward and state transition distributions are allowed to evolve over time, as long as their respective total variations, quantified by suitable metrics, do not exceed certain variation budgets. We first develop the sliding window upper confidence bound for reinforcement learning with confidence-widening (SWUCRL2-CW) algorithm and establish its dynamic regret bound when the variation budgets are known. In addition, we propose the bandit-over-reinforcement learning algorithm to adaptively tune the SWUCRL2-CW algorithm to achieve the same dynamic regret bound but in a parameter-free manner (i.e., without knowing the variation budgets). Finally, we conduct numerical experiments to show that our proposed algorithms achieve superior empirical performance compared with existing algorithms. Notably, under nonstationarity, historical data samples may falsely indicate that state transition rarely happens. This thus presents a significant challenge when one tries to apply the conventional optimism in the face of uncertainty principle to achieve a low dynamic regret bound. We overcome this challenge by proposing a novel confidence-widening technique that incorporates additional optimism into our learning algorithms. To extend our theoretical findings, we demonstrate, in the context of single-item inventory control with lost sales, fixed cost, and zero lead time, how one can leverage special structures on the state transition distributions to achieve improved dynamic regret bound in time-varying demand environments. This paper was accepted by J. George Shanthikumar, data science. Funding: The authors acknowledge support from the Massachusetts Institute of Technology (MIT) Data Science Laboratory and the MIT–IBM partnership in artificial intelligence. W. C. Cheung acknowledges support from the Singapore Ministry of Education [Tier 2 Grant MOE-T2EP20121-0012]. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2023.4704 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青山完成签到,获得积分20
刚刚
刚刚
火星上的听云完成签到,获得积分10
1秒前
鲤鱼寻菡完成签到,获得积分10
1秒前
1秒前
222完成签到,获得积分20
1秒前
2秒前
甘牡娟完成签到,获得积分10
2秒前
yigu发布了新的文献求助10
2秒前
惠惠完成签到 ,获得积分10
2秒前
lkc发布了新的文献求助10
2秒前
情怀应助朴素的清采纳,获得10
3秒前
晚安完成签到,获得积分10
3秒前
山丘完成签到,获得积分10
4秒前
DrYang完成签到,获得积分10
4秒前
科研通AI5应助微笑采纳,获得10
4秒前
5秒前
务实盼海完成签到 ,获得积分20
5秒前
小张张完成签到,获得积分10
5秒前
YAN完成签到,获得积分10
5秒前
隐形曼青应助卑以自牧采纳,获得10
6秒前
脑洞疼应助xieunx采纳,获得10
6秒前
wjw关闭了wjw文献求助
6秒前
夜白完成签到,获得积分0
6秒前
Cynthia完成签到,获得积分10
6秒前
美丽小蕾完成签到,获得积分10
6秒前
心花怒放完成签到,获得积分20
6秒前
林上草应助xzn1123采纳,获得10
7秒前
qwt_hello发布了新的文献求助10
8秒前
9秒前
科研虎完成签到,获得积分10
9秒前
大眼的平松完成签到,获得积分10
9秒前
丶呆久自然萌完成签到,获得积分10
9秒前
9秒前
10秒前
淡淡的夜山完成签到,获得积分10
10秒前
SYLH应助阿勒泰采纳,获得10
11秒前
11秒前
11秒前
菊菊关注了科研通微信公众号
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762