已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Distinguishing drug/non-drug-like small molecules in drug discovery using deep belief network

药品 概化理论 药物发现 公共化学 计算机科学 药物开发 人工智能 机器学习 批准的药物 药理学 数据挖掘 医学 计算生物学 生物信息学 数学 统计 生物
作者
Seyed Aghil Hooshmand,Sadegh Azimzadeh Jamalkandi,Seyed Mehdi Alavi,Ali Masoudi‐Nejad
出处
期刊:Molecular Diversity [Springer Nature]
卷期号:25 (2): 827-838 被引量:20
标识
DOI:10.1007/s11030-020-10065-7
摘要

The advent of computational methods for efficient prediction of the druglikeness of small molecules and their ever-burgeoning applications in the fields of medicinal chemistry and drug industries have been a profound scientific development, since only a few amounts of the small molecule libraries were identified as approvable drugs. In this study, a deep belief network was utilized to construct a druglikeness classification model. For this purpose, small molecules and approved drugs from the ZINC database were selected for the unsupervised pre-training step and supervised training step. Various binary fingerprints such as Macc 166 bit, PubChem 881 bit, and Morgan 2048 bit as data features were investigated. The report revealed that using an unsupervised pre-training phase can lead to a good performance model and generalizability capability. Accuracy, precision, and recall of the model for Macc features were 97%, 96%, and 99%, respectively. For more consideration about the generalizability of the model, the external data by expression and investigational drugs in drug banks as drug data and randomly selected data from the ZINC database as non-drug were created. The results confirmed the good performance and generalizability capability of the model. Also, the outcomes depicted that a large proportion of misclassified non-drug small molecules ascertain the bioavailability conditions and could be investigated as a drug in the future. Furthermore, our model attempted to tap potential opportunities as a drug filter in drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜倾心完成签到,获得积分10
1秒前
MoonByMoon发布了新的文献求助10
2秒前
AI_Medical完成签到,获得积分10
2秒前
高兴醉薇完成签到 ,获得积分10
2秒前
粽子完成签到,获得积分10
4秒前
chen发布了新的文献求助10
5秒前
沉钧发布了新的文献求助10
7秒前
123456777完成签到 ,获得积分0
9秒前
FashionBoy应助MoonByMoon采纳,获得10
9秒前
我是老大应助开放道天采纳,获得10
10秒前
winnie完成签到,获得积分10
13秒前
顺顺顺应助孤独的小玉采纳,获得10
13秒前
lu2025发布了新的文献求助10
14秒前
葛子文完成签到 ,获得积分10
14秒前
在水一方应助沉钧采纳,获得10
14秒前
1nooooo完成签到 ,获得积分10
17秒前
精明玲完成签到 ,获得积分10
18秒前
LJL完成签到 ,获得积分10
18秒前
笨蛋搞笑女完成签到 ,获得积分10
19秒前
zhdhh完成签到,获得积分10
19秒前
大模型应助大喵采纳,获得10
21秒前
suge完成签到 ,获得积分10
21秒前
粥粥完成签到,获得积分10
21秒前
Leofar完成签到 ,获得积分10
22秒前
张凌完成签到,获得积分10
26秒前
简单寻冬完成签到,获得积分10
26秒前
26秒前
26秒前
wanci应助科研通管家采纳,获得10
27秒前
华仔应助科研通管家采纳,获得10
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
xu应助科研通管家采纳,获得30
27秒前
yyds应助科研通管家采纳,获得10
27秒前
Criminology34应助科研通管家采纳,获得10
27秒前
30秒前
30秒前
灰灰发布了新的文献求助10
30秒前
科研通AI2S应助落后的蚂蚁采纳,获得10
31秒前
32秒前
简单寻冬发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639380
求助须知:如何正确求助?哪些是违规求助? 4747904
关于积分的说明 15006208
捐赠科研通 4797525
什么是DOI,文献DOI怎么找? 2563511
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482245