Distinguishing drug/non-drug-like small molecules in drug discovery using deep belief network

药品 概化理论 药物发现 公共化学 计算机科学 药物开发 人工智能 机器学习 批准的药物 药理学 数据挖掘 医学 计算生物学 生物信息学 数学 统计 生物
作者
Seyed Aghil Hooshmand,Sadegh Azimzadeh Jamalkandi,Seyed Mehdi Alavi,Ali Masoudi‐Nejad
出处
期刊:Molecular Diversity [Springer Nature]
卷期号:25 (2): 827-838 被引量:17
标识
DOI:10.1007/s11030-020-10065-7
摘要

The advent of computational methods for efficient prediction of the druglikeness of small molecules and their ever-burgeoning applications in the fields of medicinal chemistry and drug industries have been a profound scientific development, since only a few amounts of the small molecule libraries were identified as approvable drugs. In this study, a deep belief network was utilized to construct a druglikeness classification model. For this purpose, small molecules and approved drugs from the ZINC database were selected for the unsupervised pre-training step and supervised training step. Various binary fingerprints such as Macc 166 bit, PubChem 881 bit, and Morgan 2048 bit as data features were investigated. The report revealed that using an unsupervised pre-training phase can lead to a good performance model and generalizability capability. Accuracy, precision, and recall of the model for Macc features were 97%, 96%, and 99%, respectively. For more consideration about the generalizability of the model, the external data by expression and investigational drugs in drug banks as drug data and randomly selected data from the ZINC database as non-drug were created. The results confirmed the good performance and generalizability capability of the model. Also, the outcomes depicted that a large proportion of misclassified non-drug small molecules ascertain the bioavailability conditions and could be investigated as a drug in the future. Furthermore, our model attempted to tap potential opportunities as a drug filter in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆沙包子发布了新的文献求助10
刚刚
互助遵法尚德应助airsh采纳,获得10
1秒前
1秒前
carryxu发布了新的文献求助10
2秒前
肖莹完成签到,获得积分10
3秒前
curtisness应助阳光的静白采纳,获得10
3秒前
HEIKU应助luckily采纳,获得10
6秒前
赵慧完成签到,获得积分10
8秒前
10秒前
curtisness应助感谢大佬采纳,获得10
11秒前
asma完成签到,获得积分10
12秒前
12秒前
不安雅琴完成签到,获得积分20
14秒前
CWNU_HAN应助海棠依旧采纳,获得30
14秒前
不安雅琴发布了新的文献求助10
19秒前
are完成签到,获得积分10
20秒前
ok发布了新的文献求助10
21秒前
王小乐完成签到 ,获得积分10
21秒前
感谢大佬发布了新的文献求助10
21秒前
22秒前
今后应助研猫采纳,获得10
22秒前
24秒前
25秒前
25秒前
27秒前
香蕉觅云应助可靠的秋尽采纳,获得10
27秒前
28秒前
28秒前
tinatian270完成签到,获得积分10
28秒前
jie发布了新的文献求助10
29秒前
32秒前
34秒前
35秒前
科目三应助jie采纳,获得10
36秒前
天天快乐应助安玖采纳,获得10
38秒前
amazeman111发布了新的文献求助10
38秒前
我是老大应助炝拌维C采纳,获得10
39秒前
39秒前
李健应助爱撒娇的无施采纳,获得10
40秒前
40秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128973
求助须知:如何正确求助?哪些是违规求助? 2779757
关于积分的说明 7744663
捐赠科研通 2434935
什么是DOI,文献DOI怎么找? 1293790
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530