Distinguishing drug/non-drug-like small molecules in drug discovery using deep belief network

药品 概化理论 药物发现 公共化学 计算机科学 药物开发 人工智能 机器学习 批准的药物 药理学 数据挖掘 医学 计算生物学 生物信息学 数学 统计 生物
作者
Seyed Aghil Hooshmand,Sadegh Azimzadeh Jamalkandi,Seyed Mehdi Alavi,Ali Masoudi‐Nejad
出处
期刊:Molecular Diversity [Springer Science+Business Media]
卷期号:25 (2): 827-838 被引量:20
标识
DOI:10.1007/s11030-020-10065-7
摘要

The advent of computational methods for efficient prediction of the druglikeness of small molecules and their ever-burgeoning applications in the fields of medicinal chemistry and drug industries have been a profound scientific development, since only a few amounts of the small molecule libraries were identified as approvable drugs. In this study, a deep belief network was utilized to construct a druglikeness classification model. For this purpose, small molecules and approved drugs from the ZINC database were selected for the unsupervised pre-training step and supervised training step. Various binary fingerprints such as Macc 166 bit, PubChem 881 bit, and Morgan 2048 bit as data features were investigated. The report revealed that using an unsupervised pre-training phase can lead to a good performance model and generalizability capability. Accuracy, precision, and recall of the model for Macc features were 97%, 96%, and 99%, respectively. For more consideration about the generalizability of the model, the external data by expression and investigational drugs in drug banks as drug data and randomly selected data from the ZINC database as non-drug were created. The results confirmed the good performance and generalizability capability of the model. Also, the outcomes depicted that a large proportion of misclassified non-drug small molecules ascertain the bioavailability conditions and could be investigated as a drug in the future. Furthermore, our model attempted to tap potential opportunities as a drug filter in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
辅助成灾完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
1秒前
milly完成签到,获得积分10
1秒前
舒适数据线应助waoller1采纳,获得10
1秒前
沸腾鱼应助waoller1采纳,获得10
1秒前
GY发布了新的文献求助10
1秒前
宁静致远完成签到,获得积分10
1秒前
ZHQ发布了新的文献求助10
2秒前
小火锅发布了新的文献求助10
2秒前
Ace发布了新的文献求助10
3秒前
朴实惜天发布了新的文献求助10
3秒前
tao完成签到,获得积分10
3秒前
4秒前
4秒前
nbing完成签到,获得积分10
4秒前
紫色de泡沫完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
小飞龙完成签到,获得积分10
5秒前
plq发布了新的文献求助10
5秒前
5秒前
yj794421355发布了新的文献求助10
5秒前
MchemG应助17853723535采纳,获得10
5秒前
好好学习发布了新的文献求助10
5秒前
吴圳发布了新的文献求助10
5秒前
栀鱼完成签到 ,获得积分10
5秒前
瘾9完成签到,获得积分10
5秒前
Rondab应助甘地采纳,获得10
5秒前
含含含完成签到,获得积分10
7秒前
7秒前
麦子完成签到 ,获得积分10
8秒前
上好佳完成签到,获得积分10
8秒前
8秒前
kiminonawa完成签到,获得积分0
9秒前
懦弱的咖啡豆完成签到,获得积分10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009765
求助须知:如何正确求助?哪些是违规求助? 3549723
关于积分的说明 11303208
捐赠科研通 3284239
什么是DOI,文献DOI怎么找? 1810545
邀请新用户注册赠送积分活动 886356
科研通“疑难数据库(出版商)”最低求助积分说明 811355