扫描电镜
光漂白
基本事实
计算机科学
人工智能
图像分辨率
分辨率(逻辑)
薄层荧光显微镜
计算机视觉
图像(数学)
显微镜
光学
残余物
材料科学
降噪
算法
超分辨率
物理
扫描共焦电子显微镜
荧光
作者
Jiji Chen,Hideki Sasaki,Hoyin Lai,Yijun Su,Shiyuan Liu,Yicong Wu,Alexander S. Zhovmer,Christian A. Combs,Ivan Rey‐Suarez,Hung-Yu Chang,Chi Chou Huang,Xuesong Li,Min Guo,Srineil Nizambad,Arpita Upadhyaya,Shih-Jong J. Lee,Luciano Lucas,Hari Shroff
标识
DOI:10.1101/2020.08.27.270439
摘要
Abstract We demonstrate residual channel attention networks (RCAN) for restoring and enhancing volumetric time-lapse (4D) fluorescence microscopy data. First, we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy 4D super-resolution data, enabling image capture over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables class-leading resolution enhancement, superior to other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ∼2.5-fold lateral resolution enhancement using stimulated emission depletion (STED) microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy ground truth, achieving improvements of ∼1.4-fold laterally and ∼3.4-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluating and further enhancing network performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI