Metal mixtures and kidney function: An application of machine learning to NHANES data

肾功能 蛋白尿 肾脏疾病 肌酐 医学 全国健康与营养检查调查 内科学 泌尿科 化学 环境卫生 人口
作者
Juhua Luo,Michael Hendryx
出处
期刊:Environmental Research [Elsevier]
卷期号:191: 110126-110126 被引量:57
标识
DOI:10.1016/j.envres.2020.110126
摘要

Exposure to heavy metals may increase risk of kidney disease, but most studies have examined individual metals or two-way interactions. There is increasing recognition of the importance of studying exposure to metal mixtures and health outcomes. We used Bayesian kernel machine regression (BKMR) to examine associations between a mixture of four heavy metals and indicators of kidney function. We used NHANES 2015-16 data on 1435 adults aged 40 and over to study cross-sectional associations between blood levels of four heavy metals (Co, Cr, Hg and Pb) and kidney function. Kidney function was assessed by estimated glomerular filtration rate (eGFR) and by albumin to creatinine ratio (ACR), measured continuously and dichotomized into indicators of chronic kidney disease (CKD) and albuminuria, respectively. BKMR tested for non-linearity in the exposure-specific responses to evaluate dose-response relationships between mixtures and outcomes and possible interaction effects among exposures. Interactions among continuous outcomes were identified using the NLinteraction package in R. A higher metals mixture was significantly associated with all four measures of kidney function in dose-response patterns. Pb had the strongest association with eGFR, albuminuria and ACR, and the second strongest association with CKD. We also observed an interaction between Pb and Co for eGFR and an interaction between Pb and Cd for ACR. Exposure to a co-occurring heavy metals mixture was associated with indicators of poor kidney function. Within this mixture, Pb, Co and Cd considered singly and jointly made the greatest contributions to the observed effects. Future prospective study is needed to confirm the association between metal mixtures and kidney function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
绵绵球发布了新的文献求助10
2秒前
2秒前
2秒前
大胆芯发布了新的文献求助10
2秒前
2秒前
所所应助丁蕾采纳,获得10
3秒前
3秒前
bin发布了新的文献求助10
3秒前
Aurora完成签到,获得积分10
4秒前
5秒前
汉堡包应助ye采纳,获得10
5秒前
132发布了新的文献求助10
5秒前
牛肉mianbo发布了新的文献求助10
5秒前
xxf发布了新的文献求助10
5秒前
隐形曼青应助xiaomage采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
小丸子的樱桃红完成签到,获得积分10
8秒前
邱文县发布了新的文献求助10
8秒前
Mao关闭了Mao文献求助
8秒前
小郭完成签到,获得积分10
8秒前
jzt12138发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
FranklinQaQ完成签到,获得积分10
10秒前
10秒前
三莫莫莫发布了新的文献求助20
10秒前
大模型应助荒林采纳,获得30
10秒前
尔舟行发布了新的文献求助10
10秒前
11秒前
11秒前
大营村完成签到,获得积分10
11秒前
12秒前
实验顺利完成签到 ,获得积分20
13秒前
伪话痨家发布了新的文献求助30
13秒前
balenidezhupi发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667