Metal mixtures and kidney function: An application of machine learning to NHANES data

肾功能 蛋白尿 肾脏疾病 肌酐 医学 全国健康与营养检查调查 内科学 泌尿科 化学 环境卫生 人口
作者
Juhua Luo,Michael Hendryx
出处
期刊:Environmental Research [Elsevier BV]
卷期号:191: 110126-110126 被引量:52
标识
DOI:10.1016/j.envres.2020.110126
摘要

Exposure to heavy metals may increase risk of kidney disease, but most studies have examined individual metals or two-way interactions. There is increasing recognition of the importance of studying exposure to metal mixtures and health outcomes. We used Bayesian kernel machine regression (BKMR) to examine associations between a mixture of four heavy metals and indicators of kidney function. We used NHANES 2015-16 data on 1435 adults aged 40 and over to study cross-sectional associations between blood levels of four heavy metals (Co, Cr, Hg and Pb) and kidney function. Kidney function was assessed by estimated glomerular filtration rate (eGFR) and by albumin to creatinine ratio (ACR), measured continuously and dichotomized into indicators of chronic kidney disease (CKD) and albuminuria, respectively. BKMR tested for non-linearity in the exposure-specific responses to evaluate dose-response relationships between mixtures and outcomes and possible interaction effects among exposures. Interactions among continuous outcomes were identified using the NLinteraction package in R. A higher metals mixture was significantly associated with all four measures of kidney function in dose-response patterns. Pb had the strongest association with eGFR, albuminuria and ACR, and the second strongest association with CKD. We also observed an interaction between Pb and Co for eGFR and an interaction between Pb and Cd for ACR. Exposure to a co-occurring heavy metals mixture was associated with indicators of poor kidney function. Within this mixture, Pb, Co and Cd considered singly and jointly made the greatest contributions to the observed effects. Future prospective study is needed to confirm the association between metal mixtures and kidney function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王加通完成签到,获得积分10
刚刚
猪猪hero发布了新的文献求助10
1秒前
南宫初柒完成签到 ,获得积分10
1秒前
2秒前
远方完成签到,获得积分10
3秒前
善良的冷梅完成签到,获得积分10
3秒前
英俊的铭应助小火苗采纳,获得10
4秒前
华半仙发布了新的文献求助10
4秒前
5秒前
leyellows完成签到 ,获得积分10
6秒前
李青函发布了新的文献求助10
11秒前
13秒前
扭扭车发布了新的文献求助10
16秒前
moon完成签到 ,获得积分10
16秒前
17秒前
卑微老大完成签到 ,获得积分10
17秒前
summitekey完成签到 ,获得积分10
17秒前
ZJPPPP完成签到,获得积分10
18秒前
niqi发布了新的文献求助10
18秒前
19秒前
FashionBoy应助zy0411采纳,获得10
24秒前
李田田发布了新的文献求助10
25秒前
快乐马发布了新的文献求助100
26秒前
胡图图完成签到,获得积分0
26秒前
Jasper应助华半仙采纳,获得10
27秒前
Ava应助小闵采纳,获得10
28秒前
花生完成签到 ,获得积分10
29秒前
科研通AI2S应助快乐马采纳,获得10
33秒前
pluto应助扣扣登陆采纳,获得10
33秒前
忐忑的蛋糕完成签到,获得积分10
34秒前
34秒前
37秒前
Owen应助知识探索家采纳,获得10
37秒前
38秒前
SXR完成签到,获得积分10
38秒前
niqi完成签到,获得积分10
39秒前
小闵发布了新的文献求助10
39秒前
39秒前
40秒前
Majiko完成签到,获得积分10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966124
求助须知:如何正确求助?哪些是违规求助? 3511501
关于积分的说明 11158638
捐赠科研通 3246146
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324