Metal mixtures and kidney function: An application of machine learning to NHANES data

肾功能 蛋白尿 肾脏疾病 肌酐 医学 全国健康与营养检查调查 内科学 泌尿科 化学 环境卫生 人口
作者
Juhua Luo,Michael Hendryx
出处
期刊:Environmental Research [Elsevier]
卷期号:191: 110126-110126 被引量:72
标识
DOI:10.1016/j.envres.2020.110126
摘要

Exposure to heavy metals may increase risk of kidney disease, but most studies have examined individual metals or two-way interactions. There is increasing recognition of the importance of studying exposure to metal mixtures and health outcomes. We used Bayesian kernel machine regression (BKMR) to examine associations between a mixture of four heavy metals and indicators of kidney function. We used NHANES 2015-16 data on 1435 adults aged 40 and over to study cross-sectional associations between blood levels of four heavy metals (Co, Cr, Hg and Pb) and kidney function. Kidney function was assessed by estimated glomerular filtration rate (eGFR) and by albumin to creatinine ratio (ACR), measured continuously and dichotomized into indicators of chronic kidney disease (CKD) and albuminuria, respectively. BKMR tested for non-linearity in the exposure-specific responses to evaluate dose-response relationships between mixtures and outcomes and possible interaction effects among exposures. Interactions among continuous outcomes were identified using the NLinteraction package in R. A higher metals mixture was significantly associated with all four measures of kidney function in dose-response patterns. Pb had the strongest association with eGFR, albuminuria and ACR, and the second strongest association with CKD. We also observed an interaction between Pb and Co for eGFR and an interaction between Pb and Cd for ACR. Exposure to a co-occurring heavy metals mixture was associated with indicators of poor kidney function. Within this mixture, Pb, Co and Cd considered singly and jointly made the greatest contributions to the observed effects. Future prospective study is needed to confirm the association between metal mixtures and kidney function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率的怜容完成签到,获得积分10
1秒前
1秒前
wanci应助严天飞采纳,获得10
1秒前
2秒前
舒服的八宝粥完成签到 ,获得积分10
2秒前
LIZ发布了新的文献求助10
3秒前
lukehan完成签到,获得积分10
3秒前
zjck663发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
冷酷瑾瑜完成签到,获得积分10
6秒前
7秒前
哈哈学术发布了新的文献求助10
7秒前
独特乖乖发布了新的文献求助30
8秒前
吴吴温欣完成签到 ,获得积分10
9秒前
丘比特应助二马三乡采纳,获得10
10秒前
11秒前
热心焦完成签到,获得积分10
11秒前
五十雎发布了新的文献求助10
12秒前
12秒前
13秒前
然后先生完成签到,获得积分10
13秒前
wanci应助肖旻采纳,获得10
14秒前
BowieHuang应助安静的芷蕊采纳,获得20
14秒前
荔荔发布了新的文献求助10
16秒前
殷勤的紫槐应助Waikit采纳,获得200
16秒前
严天飞发布了新的文献求助10
16秒前
17秒前
17秒前
BigStar发布了新的文献求助20
18秒前
18秒前
19秒前
19秒前
北秋生完成签到,获得积分10
19秒前
刘佳乐完成签到,获得积分10
19秒前
Jayson发布了新的文献求助10
21秒前
森林林林完成签到 ,获得积分10
21秒前
21秒前
深味i完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777833
求助须知:如何正确求助?哪些是违规求助? 5635925
关于积分的说明 15446909
捐赠科研通 4909743
什么是DOI,文献DOI怎么找? 2641858
邀请新用户注册赠送积分活动 1589781
关于科研通互助平台的介绍 1544290