Metal mixtures and kidney function: An application of machine learning to NHANES data

肾功能 蛋白尿 肾脏疾病 肌酐 医学 全国健康与营养检查调查 内科学 泌尿科 化学 环境卫生 人口
作者
Juhua Luo,Michael Hendryx
出处
期刊:Environmental Research [Elsevier]
卷期号:191: 110126-110126 被引量:57
标识
DOI:10.1016/j.envres.2020.110126
摘要

Exposure to heavy metals may increase risk of kidney disease, but most studies have examined individual metals or two-way interactions. There is increasing recognition of the importance of studying exposure to metal mixtures and health outcomes. We used Bayesian kernel machine regression (BKMR) to examine associations between a mixture of four heavy metals and indicators of kidney function. We used NHANES 2015-16 data on 1435 adults aged 40 and over to study cross-sectional associations between blood levels of four heavy metals (Co, Cr, Hg and Pb) and kidney function. Kidney function was assessed by estimated glomerular filtration rate (eGFR) and by albumin to creatinine ratio (ACR), measured continuously and dichotomized into indicators of chronic kidney disease (CKD) and albuminuria, respectively. BKMR tested for non-linearity in the exposure-specific responses to evaluate dose-response relationships between mixtures and outcomes and possible interaction effects among exposures. Interactions among continuous outcomes were identified using the NLinteraction package in R. A higher metals mixture was significantly associated with all four measures of kidney function in dose-response patterns. Pb had the strongest association with eGFR, albuminuria and ACR, and the second strongest association with CKD. We also observed an interaction between Pb and Co for eGFR and an interaction between Pb and Cd for ACR. Exposure to a co-occurring heavy metals mixture was associated with indicators of poor kidney function. Within this mixture, Pb, Co and Cd considered singly and jointly made the greatest contributions to the observed effects. Future prospective study is needed to confirm the association between metal mixtures and kidney function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
海南发布了新的文献求助10
1秒前
晨晨发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
缓慢尔岚发布了新的文献求助10
3秒前
善良随阴完成签到,获得积分10
3秒前
3秒前
3秒前
奶白的雪子完成签到,获得积分10
3秒前
星辰大海应助阿依咕噜采纳,获得10
5秒前
香蕉觅云应助DG采纳,获得10
5秒前
睡觉了完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
Y_Y完成签到,获得积分10
6秒前
zorro3574发布了新的文献求助10
6秒前
6秒前
6秒前
嘿嘿完成签到,获得积分10
7秒前
renxin发布了新的文献求助10
7秒前
8秒前
9秒前
内向孤菱发布了新的文献求助30
9秒前
9秒前
可可布朗尼完成签到,获得积分10
10秒前
思源应助自信笑槐采纳,获得10
11秒前
12秒前
斑比发布了新的文献求助10
13秒前
JUN发布了新的文献求助10
13秒前
14秒前
bkagyin应助澄桦采纳,获得10
14秒前
天真似狮发布了新的文献求助10
16秒前
17秒前
18秒前
科研通AI6应助厚朴采纳,获得10
18秒前
lzp完成签到 ,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131