Interpretable Multimodal Fusion Networks Reveal Mechanisms of Brain Cognition

人工智能 认知 计算机科学 机器学习 深度学习 任务(项目管理) 特征(语言学) 模式识别(心理学) 神经影像学 卷积神经网络 神经科学 心理学 语言学 哲学 经济 管理
作者
Wei Hu,Xiang-He Meng,Yuntong Bai,Aiying Zhang,Gang Qu,Biao Cai,Gemeng Zhang,Tony W. Wilson,Julia M. Stephen,Vince D. Calhoun,Yuping Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (5): 1474-1483 被引量:25
标识
DOI:10.1109/tmi.2021.3057635
摘要

The combination of multimodal imaging and genomics provides a more comprehensive way for the study of mental illnesses and brain functions. Deep network-based data fusion models have been developed to capture their complex associations, resulting in improved diagnosis of diseases. However, deep learning models are often difficult to interpret, bringing about challenges for uncovering biological mechanisms using these models. In this work, we develop an interpretable multimodal fusion model to perform automated diagnosis and result interpretation simultaneously. We name it Grad-CAM guided convolutional collaborative learning (gCAM-CCL), which is achieved by combining intermediate feature maps with gradient-based weights. The gCAM-CCL model can generate interpretable activation maps to quantify pixel-level contributions of the input features. Moreover, the estimated activation maps are class-specific, which can therefore facilitate the identification of biomarkers underlying different groups. We validate the gCAM-CCL model on a brain imaging-genetic study, and demonstrate its applications to both the classification of cognitive function groups and the discovery of underlying biological mechanisms. Specifically, our analysis results suggest that during task-fMRI scans, several object recognition related regions of interests (ROIs) are activated followed by several downstream encoding ROIs. In addition, the high cognitive group may have stronger neurotransmission signaling while the low cognitive group may have problems in brain/neuron development due to genetic variations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助小何同学采纳,获得10
刚刚
tan发布了新的文献求助10
1秒前
马玲发布了新的文献求助10
2秒前
NexusExplorer应助jwhardaway采纳,获得10
2秒前
坚定飞鸟完成签到,获得积分10
3秒前
HWJ关注了科研通微信公众号
4秒前
5秒前
大模型应助等待的雪碧采纳,获得10
5秒前
5秒前
5秒前
听风随影发布了新的文献求助10
5秒前
雾中的山雾中的我完成签到,获得积分10
6秒前
koukousang完成签到,获得积分10
6秒前
cfcf完成签到 ,获得积分10
6秒前
pipi发布了新的文献求助10
6秒前
优美一寡完成签到,获得积分10
7秒前
添酱完成签到,获得积分20
7秒前
crescentluo完成签到,获得积分10
9秒前
赘婿应助lalala采纳,获得10
9秒前
9秒前
10秒前
李春霞发布了新的文献求助10
10秒前
Cruffin发布了新的文献求助10
11秒前
11秒前
踏实的映易完成签到 ,获得积分10
11秒前
香蕉觅云应助happiness采纳,获得10
12秒前
一一发布了新的文献求助10
12秒前
SciGPT应助chl采纳,获得10
12秒前
完美世界应助小黄瓜896采纳,获得30
12秒前
jwhardaway完成签到,获得积分10
13秒前
斯人完成签到,获得积分10
13秒前
花见完成签到 ,获得积分20
14秒前
温暖的俊驰完成签到,获得积分10
14秒前
14秒前
15秒前
差生文具多完成签到 ,获得积分10
16秒前
16秒前
FashionBoy应助lu采纳,获得10
16秒前
科研小菜发布了新的文献求助10
17秒前
捞钱阿达完成签到,获得积分10
17秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159124
求助须知:如何正确求助?哪些是违规求助? 2810283
关于积分的说明 7887027
捐赠科研通 2469127
什么是DOI,文献DOI怎么找? 1314668
科研通“疑难数据库(出版商)”最低求助积分说明 630671
版权声明 602012