Interpretable Multimodal Fusion Networks Reveal Mechanisms of Brain Cognition

人工智能 认知 计算机科学 机器学习 深度学习 任务(项目管理) 特征(语言学) 模式识别(心理学) 神经影像学 卷积神经网络 神经科学 心理学 语言学 哲学 经济 管理
作者
Wei Hu,Xiang-He Meng,Yuntong Bai,Aiying Zhang,Gang Qu,Biao Cai,Gemeng Zhang,Tony W. Wilson,Julia M. Stephen,Vince D. Calhoun,Yuping Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (5): 1474-1483 被引量:25
标识
DOI:10.1109/tmi.2021.3057635
摘要

The combination of multimodal imaging and genomics provides a more comprehensive way for the study of mental illnesses and brain functions. Deep network-based data fusion models have been developed to capture their complex associations, resulting in improved diagnosis of diseases. However, deep learning models are often difficult to interpret, bringing about challenges for uncovering biological mechanisms using these models. In this work, we develop an interpretable multimodal fusion model to perform automated diagnosis and result interpretation simultaneously. We name it Grad-CAM guided convolutional collaborative learning (gCAM-CCL), which is achieved by combining intermediate feature maps with gradient-based weights. The gCAM-CCL model can generate interpretable activation maps to quantify pixel-level contributions of the input features. Moreover, the estimated activation maps are class-specific, which can therefore facilitate the identification of biomarkers underlying different groups. We validate the gCAM-CCL model on a brain imaging-genetic study, and demonstrate its applications to both the classification of cognitive function groups and the discovery of underlying biological mechanisms. Specifically, our analysis results suggest that during task-fMRI scans, several object recognition related regions of interests (ROIs) are activated followed by several downstream encoding ROIs. In addition, the high cognitive group may have stronger neurotransmission signaling while the low cognitive group may have problems in brain/neuron development due to genetic variations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助兔兔要睡觉采纳,获得10
2秒前
小刘一定能读C9博完成签到 ,获得积分10
3秒前
4秒前
4秒前
发酱发布了新的文献求助10
4秒前
无花果应助ting采纳,获得10
5秒前
王建发布了新的文献求助10
5秒前
7秒前
干雅柏完成签到,获得积分10
7秒前
7秒前
7秒前
SiDi完成签到,获得积分10
8秒前
尘世迷途小书童完成签到,获得积分10
10秒前
Arron发布了新的文献求助10
11秒前
干雅柏发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
雷雷发布了新的文献求助30
12秒前
无昵称完成签到 ,获得积分10
17秒前
我不李姐发布了新的文献求助10
17秒前
蔷薇果完成签到 ,获得积分10
18秒前
18秒前
迷途的小牛完成签到,获得积分10
19秒前
19秒前
19秒前
梁十一应助王建采纳,获得30
20秒前
20秒前
Dr.lee完成签到,获得积分10
20秒前
basil完成签到,获得积分10
21秒前
思源应助Alone离殇采纳,获得10
21秒前
22秒前
22秒前
22秒前
鲍勃发布了新的文献求助10
24秒前
24秒前
夏子完成签到,获得积分10
25秒前
25秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951026
求助须知:如何正确求助?哪些是违规求助? 3496458
关于积分的说明 11082124
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801003