Pose Refinement Graph Convolutional Network for Skeleton-Based Action Recognition

计算机科学 人工智能 卷积神经网络 图形 机器人学 内存占用 动作识别 深度学习 机器学习 模式识别(心理学) 理论计算机科学 机器人 班级(哲学) 操作系统
作者
Shijie Li,Jinhui Yi,Yazan Abu Farha,Jüergen Gall
出处
期刊:IEEE robotics and automation letters 卷期号:6 (2): 1028-1035 被引量:42
标识
DOI:10.1109/lra.2021.3056361
摘要

With the advances in capturing 2D or 3D skeleton data, skeleton-based action recognition has received an increasing interest over the last years. As skeleton data is commonly represented by graphs, graph convolutional networks have been proposed for this task. While current graph convolutional networks accurately recognize actions, they are too expensive for robotics applications where limited computational resources are available. In this letter, we therefore propose a highly efficient graph convolutional network that addresses the limitations of previous works. This is achieved by a parallel structure that gradually fuses motion and spatial information and by reducing the temporal resolution as early as possible. Furthermore, we explicitly address the issue that human poses can contain errors. To this end, the network first refines the poses before they are further processed to recognize the action. We therefore call the network Pose Refinement Graph Convolutional Network. Compared to other graph convolutional networks, our network requires 86%--93% less parameters and reduces the floating point operations by 89%--96% while achieving a comparable accuracy. It therefore provides a much better trade-off between accuracy, memory footprint and processing time, which makes it suitable for robotics applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sens完成签到,获得积分10
刚刚
是帆帆呀完成签到,获得积分10
刚刚
WZ发布了新的文献求助10
1秒前
A羊_发布了新的文献求助10
1秒前
2秒前
2秒前
JamesPei应助霸气剑通采纳,获得10
3秒前
merlinsong发布了新的文献求助10
4秒前
4秒前
5秒前
花花发布了新的文献求助10
5秒前
Walker完成签到,获得积分10
5秒前
华仔应助落寞的采文采纳,获得10
6秒前
青鱼发布了新的文献求助10
6秒前
lignin完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
TIANEO完成签到,获得积分20
7秒前
cytomix完成签到,获得积分10
7秒前
orixero应助年轻的冰淇淋采纳,获得10
7秒前
清新王老吉完成签到,获得积分10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助30
9秒前
默默海露完成签到,获得积分20
9秒前
Vicky1111完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
BUG完成签到,获得积分10
11秒前
邓施展关注了科研通微信公众号
11秒前
13秒前
Cloud发布了新的文献求助10
13秒前
万能图书馆应助布吉岛采纳,获得10
14秒前
14秒前
迅速翠风关注了科研通微信公众号
15秒前
青鱼发布了新的文献求助10
15秒前
青鱼发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425