Pose Refinement Graph Convolutional Network for Skeleton-Based Action Recognition

计算机科学 人工智能 卷积神经网络 图形 机器人学 内存占用 动作识别 深度学习 机器学习 模式识别(心理学) 理论计算机科学 机器人 班级(哲学) 操作系统
作者
Shijie Li,Jinhui Yi,Yazan Abu Farha,Jüergen Gall
出处
期刊:IEEE robotics and automation letters 卷期号:6 (2): 1028-1035 被引量:42
标识
DOI:10.1109/lra.2021.3056361
摘要

With the advances in capturing 2D or 3D skeleton data, skeleton-based action recognition has received an increasing interest over the last years. As skeleton data is commonly represented by graphs, graph convolutional networks have been proposed for this task. While current graph convolutional networks accurately recognize actions, they are too expensive for robotics applications where limited computational resources are available. In this letter, we therefore propose a highly efficient graph convolutional network that addresses the limitations of previous works. This is achieved by a parallel structure that gradually fuses motion and spatial information and by reducing the temporal resolution as early as possible. Furthermore, we explicitly address the issue that human poses can contain errors. To this end, the network first refines the poses before they are further processed to recognize the action. We therefore call the network Pose Refinement Graph Convolutional Network. Compared to other graph convolutional networks, our network requires 86%--93% less parameters and reduces the floating point operations by 89%--96% while achieving a comparable accuracy. It therefore provides a much better trade-off between accuracy, memory footprint and processing time, which makes it suitable for robotics applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin发布了新的文献求助10
1秒前
顾矜应助盲点采纳,获得10
1秒前
2秒前
2秒前
haoooooooooooooo应助LSH970829采纳,获得10
3秒前
搜集达人应助求知的周采纳,获得30
3秒前
3秒前
研友_ZlqeD8完成签到,获得积分10
3秒前
3秒前
3秒前
领导范儿应助juaner采纳,获得10
4秒前
4秒前
5秒前
5秒前
Orange应助聪明新梅采纳,获得10
6秒前
6秒前
Mashiro发布了新的文献求助10
6秒前
Zhang发布了新的文献求助10
6秒前
JM发布了新的文献求助10
6秒前
朱云发布了新的文献求助10
7秒前
杨佳宁发布了新的文献求助10
7秒前
十号发布了新的文献求助10
8秒前
落后的乌龟应助小太阳采纳,获得10
8秒前
8秒前
领导范儿应助shu采纳,获得10
8秒前
chemchen完成签到,获得积分10
8秒前
HZH完成签到,获得积分10
8秒前
圆圆901234发布了新的文献求助30
9秒前
10秒前
花粉过敏完成签到,获得积分10
11秒前
KXQ发布了新的文献求助10
11秒前
科研通AI2S应助敲敲采纳,获得10
11秒前
霜序完成签到,获得积分10
12秒前
水蔓菁完成签到,获得积分10
12秒前
momo完成签到 ,获得积分10
12秒前
12秒前
12秒前
还单身的老虎完成签到,获得积分10
12秒前
Mashiro完成签到,获得积分10
12秒前
无花果应助优雅的听兰采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049