A Deep Learning Model for the Accurate and Reliable Classification of Disc Degeneration Based on MRI Data

人工智能 计算机科学 模式识别(心理学) 变性(医学) 病理 医学
作者
Frank Niemeyer,Fabio Galbusera,Youping Tao,Annette Kienle,Meinrad Beer,Hans‐Joachim Wilke
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:56 (2): 78-85 被引量:50
标识
DOI:10.1097/rli.0000000000000709
摘要

Objectives Although magnetic resonance imaging–based formalized grading schemes for intervertebral disc degeneration offer improved reproducibility compared with purely subjective ratings, their intrarater and interrater reliability are not nearly good enough to be able to detect small to medium effects in clinical longitudinal studies. The aim of this study thus was to develop a method that enables automatic and therefore reproducible and reliable evaluation of disc degeneration based on conventional clinical image data and Pfirrmann's grading scheme. Materials and Methods We propose a classifier based on a deep convolutional neural network that we trained on a large, manually evaluated data set of 1599 patients (7948 intervertebral discs). To improve upon the status quo, we focused on the quality of the training data and performed extensive hyperparameter optimization. We assessed the potential benefits of optimizing loss functions beyond common cross-entropy loss, such as soft kappa loss, ordinal cross-entropy loss, or regression losses. We furthermore experimented with ways to mitigate class imbalance by pooling classes or using class-weighted loss functions. During model development and hyperparameter optimization, we used a fixed 90%/10% training/validation set split. To estimate real-world prediction performance, we performed 10-fold cross-validation. Results The evaluated image data results in a Gaussian degeneration grade distribution, and thus grades 1 and 5 are slightly underrepresented in the training set. Our default cross-entropy–based classifier achieves a reliability of κ = 0.92 (Cohen κ), an average sensitivity of 90.2%, and an average precision of 92.5%. In 99.2% of validation cases, the network's prediction deviates at most 1 Pfirrmann grades from the ground truth. Framed as an ordinal regression problem, the mean absolute error between the ground truth and the prediction is 0.08 Pfirrmann grade with a correlation of r = 0.96. The results of the 10-fold cross validation confirm those performance estimates, indicating no substantial overfitting. More sophisticated loss functions, class-based loss weighting, or class pooling did not lead to improved classification performance overall. Conclusions With a reliability of κ > 0.9, our system clearly outperforms average human interrater as well as intrarater reliability. With an average sensitivity of more than 90%, our classifier also surpasses state-of-the-art machine learning solutions for automatically grading disc degeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助yuankeyi采纳,获得10
刚刚
1秒前
善学以致用应助感动水杯采纳,获得10
2秒前
3秒前
hhhhhh应助RICK采纳,获得30
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
哇啦哇啦完成签到,获得积分10
4秒前
tingtingchen关注了科研通微信公众号
5秒前
丘比特应助悦耳的口红采纳,获得10
5秒前
5秒前
成就的白羊完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
独角兽发布了新的文献求助10
7秒前
7秒前
风中的太阳完成签到,获得积分10
7秒前
hz_sz完成签到,获得积分10
8秒前
8秒前
Eric完成签到,获得积分10
8秒前
赘婿应助Amorfati采纳,获得10
8秒前
8秒前
连南烟发布了新的文献求助10
9秒前
9秒前
CM发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
施天问发布了新的文献求助10
10秒前
YANDD发布了新的文献求助10
10秒前
SciGPT应助11采纳,获得10
10秒前
涂钰完成签到,获得积分20
11秒前
11秒前
shang发布了新的文献求助10
11秒前
enchanted完成签到,获得积分10
11秒前
杀鸡不用刀完成签到 ,获得积分10
11秒前
Lucas应助lllm采纳,获得10
12秒前
英俊001完成签到 ,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009557
求助须知:如何正确求助?哪些是违规求助? 3549561
关于积分的说明 11302629
捐赠科研通 3284139
什么是DOI,文献DOI怎么找? 1810469
邀请新用户注册赠送积分活动 886322
科研通“疑难数据库(出版商)”最低求助积分说明 811345