清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Deep Learning Model for the Accurate and Reliable Classification of Disc Degeneration Based on MRI Data

人工智能 计算机科学 模式识别(心理学) 变性(医学) 病理 医学
作者
Frank Niemeyer,Fabio Galbusera,Youping Tao,Annette Kienle,Meinrad Beer,Hans‐Joachim Wilke
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:56 (2): 78-85 被引量:44
标识
DOI:10.1097/rli.0000000000000709
摘要

Objectives Although magnetic resonance imaging–based formalized grading schemes for intervertebral disc degeneration offer improved reproducibility compared with purely subjective ratings, their intrarater and interrater reliability are not nearly good enough to be able to detect small to medium effects in clinical longitudinal studies. The aim of this study thus was to develop a method that enables automatic and therefore reproducible and reliable evaluation of disc degeneration based on conventional clinical image data and Pfirrmann's grading scheme. Materials and Methods We propose a classifier based on a deep convolutional neural network that we trained on a large, manually evaluated data set of 1599 patients (7948 intervertebral discs). To improve upon the status quo, we focused on the quality of the training data and performed extensive hyperparameter optimization. We assessed the potential benefits of optimizing loss functions beyond common cross-entropy loss, such as soft kappa loss, ordinal cross-entropy loss, or regression losses. We furthermore experimented with ways to mitigate class imbalance by pooling classes or using class-weighted loss functions. During model development and hyperparameter optimization, we used a fixed 90%/10% training/validation set split. To estimate real-world prediction performance, we performed 10-fold cross-validation. Results The evaluated image data results in a Gaussian degeneration grade distribution, and thus grades 1 and 5 are slightly underrepresented in the training set. Our default cross-entropy–based classifier achieves a reliability of κ = 0.92 (Cohen κ), an average sensitivity of 90.2%, and an average precision of 92.5%. In 99.2% of validation cases, the network's prediction deviates at most 1 Pfirrmann grades from the ground truth. Framed as an ordinal regression problem, the mean absolute error between the ground truth and the prediction is 0.08 Pfirrmann grade with a correlation of r = 0.96. The results of the 10-fold cross validation confirm those performance estimates, indicating no substantial overfitting. More sophisticated loss functions, class-based loss weighting, or class pooling did not lead to improved classification performance overall. Conclusions With a reliability of κ > 0.9, our system clearly outperforms average human interrater as well as intrarater reliability. With an average sensitivity of more than 90%, our classifier also surpasses state-of-the-art machine learning solutions for automatically grading disc degeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
31秒前
宇文非笑完成签到 ,获得积分10
37秒前
Ava应助枯藤老柳树采纳,获得10
47秒前
小猴子完成签到 ,获得积分10
56秒前
yanice完成签到,获得积分10
57秒前
1分钟前
dichunxia完成签到,获得积分10
1分钟前
1分钟前
vbnn完成签到 ,获得积分10
1分钟前
1分钟前
勤奋的灯完成签到 ,获得积分10
1分钟前
2分钟前
负责冰海完成签到 ,获得积分10
2分钟前
习月阳完成签到,获得积分10
2分钟前
Ming完成签到,获得积分10
2分钟前
郭星星发布了新的文献求助10
2分钟前
dreamwalk完成签到 ,获得积分10
2分钟前
Hello应助枯藤老柳树采纳,获得10
2分钟前
lovexa完成签到,获得积分10
3分钟前
3分钟前
3分钟前
bkagyin应助科研通管家采纳,获得10
3分钟前
3分钟前
枯藤老柳树完成签到,获得积分10
4分钟前
大生蚝完成签到 ,获得积分10
4分钟前
晓晨完成签到 ,获得积分10
4分钟前
taoxz521完成签到 ,获得积分10
4分钟前
英喆完成签到 ,获得积分10
4分钟前
vsvsgo完成签到,获得积分10
4分钟前
先锋完成签到 ,获得积分10
5分钟前
kittykitten完成签到 ,获得积分10
6分钟前
aiyawy完成签到 ,获得积分10
6分钟前
远山完成签到 ,获得积分10
6分钟前
woxinyouyou完成签到,获得积分0
7分钟前
oracl完成签到 ,获得积分10
8分钟前
活力的茉莉完成签到 ,获得积分10
8分钟前
Wang完成签到 ,获得积分20
9分钟前
zwenng完成签到,获得积分10
9分钟前
9分钟前
宰宰小熊发布了新的文献求助10
9分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899736
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142