亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning Model for the Accurate and Reliable Classification of Disc Degeneration Based on MRI Data

人工智能 计算机科学 模式识别(心理学) 变性(医学) 病理 医学
作者
Frank Niemeyer,Fabio Galbusera,Youping Tao,Annette Kienle,Meinrad Beer,Hans‐Joachim Wilke
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:56 (2): 78-85 被引量:60
标识
DOI:10.1097/rli.0000000000000709
摘要

Objectives Although magnetic resonance imaging–based formalized grading schemes for intervertebral disc degeneration offer improved reproducibility compared with purely subjective ratings, their intrarater and interrater reliability are not nearly good enough to be able to detect small to medium effects in clinical longitudinal studies. The aim of this study thus was to develop a method that enables automatic and therefore reproducible and reliable evaluation of disc degeneration based on conventional clinical image data and Pfirrmann's grading scheme. Materials and Methods We propose a classifier based on a deep convolutional neural network that we trained on a large, manually evaluated data set of 1599 patients (7948 intervertebral discs). To improve upon the status quo, we focused on the quality of the training data and performed extensive hyperparameter optimization. We assessed the potential benefits of optimizing loss functions beyond common cross-entropy loss, such as soft kappa loss, ordinal cross-entropy loss, or regression losses. We furthermore experimented with ways to mitigate class imbalance by pooling classes or using class-weighted loss functions. During model development and hyperparameter optimization, we used a fixed 90%/10% training/validation set split. To estimate real-world prediction performance, we performed 10-fold cross-validation. Results The evaluated image data results in a Gaussian degeneration grade distribution, and thus grades 1 and 5 are slightly underrepresented in the training set. Our default cross-entropy–based classifier achieves a reliability of κ = 0.92 (Cohen κ), an average sensitivity of 90.2%, and an average precision of 92.5%. In 99.2% of validation cases, the network's prediction deviates at most 1 Pfirrmann grades from the ground truth. Framed as an ordinal regression problem, the mean absolute error between the ground truth and the prediction is 0.08 Pfirrmann grade with a correlation of r = 0.96. The results of the 10-fold cross validation confirm those performance estimates, indicating no substantial overfitting. More sophisticated loss functions, class-based loss weighting, or class pooling did not lead to improved classification performance overall. Conclusions With a reliability of κ > 0.9, our system clearly outperforms average human interrater as well as intrarater reliability. With an average sensitivity of more than 90%, our classifier also surpasses state-of-the-art machine learning solutions for automatically grading disc degeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin发布了新的文献求助10
3秒前
5秒前
6秒前
耶梦加得完成签到,获得积分10
6秒前
Zyl完成签到 ,获得积分10
8秒前
鸢翔flybird发布了新的文献求助10
11秒前
晚来风与雪完成签到 ,获得积分10
11秒前
彭于晏应助怕孤独的迎波采纳,获得10
14秒前
碧蓝的以云完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
20秒前
wadiu发布了新的文献求助10
21秒前
科研通AI2S应助BxChen采纳,获得10
22秒前
小煕栗粽完成签到 ,获得积分20
26秒前
天天快乐应助abc采纳,获得10
42秒前
44秒前
鸢翔flybird完成签到,获得积分10
47秒前
48秒前
壮观百招完成签到,获得积分10
50秒前
Bio发布了新的文献求助10
50秒前
CipherSage应助Bio采纳,获得30
57秒前
王木木完成签到 ,获得积分10
58秒前
番茄鱼完成签到 ,获得积分10
1分钟前
loii完成签到,获得积分10
1分钟前
桐桐应助普萘洛尔采纳,获得10
1分钟前
单薄绿竹完成签到,获得积分10
1分钟前
zy完成签到,获得积分10
1分钟前
SciGPT应助耶耶粘豆包采纳,获得10
1分钟前
田田田完成签到,获得积分10
1分钟前
1分钟前
1分钟前
饺子完成签到,获得积分10
1分钟前
惊鸿完成签到 ,获得积分10
1分钟前
田田田发布了新的文献求助10
1分钟前
辛勤若蕊完成签到,获得积分20
1分钟前
普萘洛尔发布了新的文献求助10
1分钟前
1分钟前
漂亮的孤丹完成签到 ,获得积分10
1分钟前
一一发布了新的文献求助10
1分钟前
Orange应助Nature_Science采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606518
求助须知:如何正确求助?哪些是违规求助? 4690909
关于积分的说明 14866536
捐赠科研通 4706185
什么是DOI,文献DOI怎么找? 2542718
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276