被动性
记忆电阻器
控制理论(社会学)
MATLAB语言
人工神经网络
理论(学习稳定性)
计算机科学
李雅普诺夫函数
数学
控制(管理)
非线性系统
人工智能
工程类
机器学习
物理
操作系统
电气工程
量子力学
作者
Grienggrai Rajchakit,Pharunyou Chanthorn,Michał Niezabitowski,R. Raja,Dumitru Băleanu,Pratap Anbalagan
出处
期刊:Neurocomputing
[Elsevier]
日期:2020-07-28
卷期号:417: 290-301
被引量:148
标识
DOI:10.1016/j.neucom.2020.07.036
摘要
This paper analyzes the stability and passivity problems for a class of memristor-based fractional-order competitive neural networks (MBFOCNNs) by using Caputo's fractional derivation. Firstly, impulsive effects are taken well into account and effective analysis techniques are used to reflect the system's practically dynamic behavior. Secondly, by using the Lyapunov technique, some sufficient conditions are obtained by linear matrix inequalities (LMIs) to ensure the stability and passivity of the MBFOCNNs, which can be effectively solved by the LMI computational tool in MATLAB. Finally, two numerical models and their simulation results are given to illustrate the effectiveness of the proposed results.
科研通智能强力驱动
Strongly Powered by AbleSci AI