Thai Spelling Correction and Word Normalization on Social Text Using a Two-Stage Pipeline With Neural Contextual Attention

计算机科学 拼写 错误检测和纠正 人工智能 自然语言处理 语音识别 词(群论) 字错误率 语言模型 规范化(社会学) 人工神经网络 语言学 算法 人类学 哲学 社会学
作者
Anuruth Lertpiya,Tawunrat Chalothorn,Ekapol Chuangsuwanich
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 133403-133419 被引量:14
标识
DOI:10.1109/access.2020.3010828
摘要

Text correction systems (e.g., spell checkers) have been used to improve the quality of computerized text by detecting and correcting errors. However, the task of performing spelling correction and word normalization (text correction) for Thai social media text has remained largely unexplored. In this paper, we investigated how current text correction systems perform on correcting errors and word variances in Thai social texts and propose a method designed for this task. We have found that currently available Thai text correction systems are insufficiently robust for correcting spelling errors and word variances, while the text correctors designed for English grammatical error correction suffer from overcorrections (text rewrites). Thus, we proposed a neural-based text corrector with a two-stage structure to alleviate issues of overcorrections while exploiting the benefits of a neural Seq2Seq corrector. Our method consists of a neural-based error detector and a Seq2Seq neural error corrector with contextual attention. This novel architecture allows the Seq2Seq network to produce corrections based on both the erroneous text and its context without the need for an end-to-end structure. Our method outperformed all the other evaluated text correction systems. When compared to the second-best result (copy-augmented transformer), our method further reduced the word error rate (WER) from 2.51% to 2.07%, improved the generalized language evaluation understanding (GLEU) score from 0.9409 to 0.9502 on the Thai text correction task, and improved the GLEU score from 0.7409 to 0.7539 on the English spelling correction task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助jummy采纳,获得10
1秒前
Huasen Lu发布了新的文献求助10
1秒前
Ava应助tidongzhiwu采纳,获得10
1秒前
瘦瘦的迎南完成签到 ,获得积分10
1秒前
cp完成签到,获得积分10
2秒前
传奇3应助动听芷采纳,获得10
2秒前
2秒前
3秒前
3秒前
在水一方应助whisper采纳,获得10
3秒前
情怀应助陈嗲嗲采纳,获得10
7秒前
熠熠完成签到,获得积分10
7秒前
8秒前
8秒前
Huasen Lu完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
daxueshen完成签到,获得积分10
11秒前
11秒前
11秒前
13秒前
无情干饭崽完成签到,获得积分10
14秒前
14秒前
华仔应助七月流火采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
陈小白完成签到,获得积分10
15秒前
15秒前
现实的行云完成签到,获得积分20
15秒前
拼搏的孤容完成签到 ,获得积分10
16秒前
歇菜发布了新的文献求助10
16秒前
17秒前
深情安青应助乌波菲采纳,获得10
18秒前
新司机发布了新的文献求助10
18秒前
19秒前
Jasper应助陈小白采纳,获得10
19秒前
19秒前
FashionBoy应助Cat采纳,获得10
19秒前
明理雨筠发布了新的文献求助10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010081
求助须知:如何正确求助?哪些是违规求助? 3550086
关于积分的说明 11304770
捐赠科研通 3284597
什么是DOI,文献DOI怎么找? 1810722
邀请新用户注册赠送积分活动 886535
科研通“疑难数据库(出版商)”最低求助积分说明 811451