Thai Spelling Correction and Word Normalization on Social Text Using a Two-Stage Pipeline With Neural Contextual Attention

计算机科学 拼写 错误检测和纠正 人工智能 自然语言处理 语音识别 词(群论) 字错误率 语言模型 规范化(社会学) 人工神经网络 语言学 算法 哲学 社会学 人类学
作者
Anuruth Lertpiya,Tawunrat Chalothorn,Ekapol Chuangsuwanich
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 133403-133419 被引量:14
标识
DOI:10.1109/access.2020.3010828
摘要

Text correction systems (e.g., spell checkers) have been used to improve the quality of computerized text by detecting and correcting errors. However, the task of performing spelling correction and word normalization (text correction) for Thai social media text has remained largely unexplored. In this paper, we investigated how current text correction systems perform on correcting errors and word variances in Thai social texts and propose a method designed for this task. We have found that currently available Thai text correction systems are insufficiently robust for correcting spelling errors and word variances, while the text correctors designed for English grammatical error correction suffer from overcorrections (text rewrites). Thus, we proposed a neural-based text corrector with a two-stage structure to alleviate issues of overcorrections while exploiting the benefits of a neural Seq2Seq corrector. Our method consists of a neural-based error detector and a Seq2Seq neural error corrector with contextual attention. This novel architecture allows the Seq2Seq network to produce corrections based on both the erroneous text and its context without the need for an end-to-end structure. Our method outperformed all the other evaluated text correction systems. When compared to the second-best result (copy-augmented transformer), our method further reduced the word error rate (WER) from 2.51% to 2.07%, improved the generalized language evaluation understanding (GLEU) score from 0.9409 to 0.9502 on the Thai text correction task, and improved the GLEU score from 0.7409 to 0.7539 on the English spelling correction task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
AA1完成签到,获得积分20
刚刚
1秒前
积极的雁玉发布了新的文献求助200
2秒前
2秒前
3秒前
3秒前
积极的邴发布了新的文献求助10
4秒前
4秒前
无花果应助望空采纳,获得10
4秒前
5秒前
njebcuiebvjc完成签到,获得积分20
5秒前
李晓玲发布了新的文献求助10
6秒前
6秒前
流星噬月发布了新的文献求助10
6秒前
叶知秋发布了新的文献求助10
6秒前
7秒前
7秒前
孤独如曼完成签到,获得积分10
7秒前
Owen应助至浩采纳,获得10
8秒前
zzzhhh发布了新的文献求助10
8秒前
8秒前
嘿嘿发布了新的文献求助30
8秒前
搜集达人应助文献求助采纳,获得10
9秒前
GQ发布了新的文献求助10
9秒前
王松桐发布了新的文献求助10
10秒前
Keoki发布了新的文献求助10
10秒前
陈圈圈发布了新的文献求助10
11秒前
12秒前
c7发布了新的文献求助10
12秒前
Zzzzzz完成签到,获得积分10
13秒前
机智寻雪完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
酒温书生发布了新的文献求助10
14秒前
Hello应助流星噬月采纳,获得10
14秒前
carlitos发布了新的文献求助10
15秒前
TTTT完成签到,获得积分10
15秒前
小蘑菇应助积极的邴采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589658
求助须知:如何正确求助?哪些是违规求助? 4674292
关于积分的说明 14792969
捐赠科研通 4628917
什么是DOI,文献DOI怎么找? 2532363
邀请新用户注册赠送积分活动 1501031
关于科研通互助平台的介绍 1468487