Meta-knowledge dictionary learning on 1-bit response data for student knowledge diagnosis

计算机科学 直觉 人工智能 领域知识 自然语言处理 认知科学 心理学
作者
Yupei Zhang,Huan Dai,Yun Ye,Shuhui Liu,Andrew S. Lan,Xuequn Shang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:205: 106290-106290 被引量:28
标识
DOI:10.1016/j.knosys.2020.106290
摘要

This paper focuses on the problem of student knowledge diagnosis that is a basic task of realizing personalized education. Most traditional methods rely on the question-concept matrix empirically designed by experts. However, the expert concepts are expensive and inter-overlapping in their constructions, leading to ambiguous explanations. With the intuition that each student can master a part of the knowledge involved in all questions, in this paper, we propose a novel learning-based model for student knowledge diagnosis, dubbed Meta-knowledge Dictionary Learning (metaDL). MetaDL aims to learn a meta-knowledge dictionary from student responses, where any knowledge entity (e.g., student, question or expert concept) is a linear combination of a few atoms in the meta-knowledge dictionary. The resultant problem could be effectively solved by developing the alternating direction method of multipliers. This study has three innovations: learning independent meta-knowledges instead of traditional complex concepts, sparely representing knowledge entity instead of densely weighted representation, and interpreting expert concepts with the resulting meta-knowledges. For evaluation, the diagnosis results from metaDL are used to group students and predict responses on two public datasets and a private dataset from our institution. The experiment results show that metaDL delivers an effective student knowledge diagnosis and then results in good performances on the two applications in comparison with other methods. This technique could provide significant insights into student’s knowledge state and facilitate the progress on personalized education.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顾矜应助长情的冰海采纳,获得10
2秒前
2秒前
jiangjing发布了新的文献求助30
2秒前
2秒前
TOMBER发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
丰富以亦发布了新的文献求助10
3秒前
潇洒的竹杖应助周煜锦采纳,获得10
3秒前
樂樂完成签到 ,获得积分10
3秒前
打打应助TYolo采纳,获得10
3秒前
3秒前
烂漫的凡波完成签到,获得积分10
4秒前
4秒前
Vicky完成签到 ,获得积分10
4秒前
4秒前
cyyyyyyyyyy完成签到,获得积分10
4秒前
5秒前
鱼yuyu完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
NancyRay完成签到,获得积分10
7秒前
Liugz发布了新的文献求助10
7秒前
Lucas应助jiangjing采纳,获得30
8秒前
在水一方应助珂珂采纳,获得10
8秒前
pzh完成签到,获得积分10
8秒前
科研通AI2S应助循环采纳,获得10
8秒前
9秒前
冷静的伊完成签到,获得积分10
9秒前
MaRin完成签到,获得积分20
9秒前
achilles发布了新的文献求助10
10秒前
10秒前
longer发布了新的文献求助10
10秒前
10秒前
科研通AI2S应助欧阳采纳,获得10
10秒前
桂花引完成签到,获得积分10
11秒前
llllly完成签到,获得积分10
11秒前
田様应助金桔儿采纳,获得10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505457
求助须知:如何正确求助?哪些是违规求助? 4601071
关于积分的说明 14475473
捐赠科研通 4535189
什么是DOI,文献DOI怎么找? 2485194
邀请新用户注册赠送积分活动 1468222
关于科研通互助平台的介绍 1440685