Meta-knowledge dictionary learning on 1-bit response data for student knowledge diagnosis

计算机科学 直觉 人工智能 领域知识 自然语言处理 认知科学 心理学
作者
Yupei Zhang,Huan Dai,Yun Ye,Shuhui Liu,Andrew S. Lan,Xuequn Shang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:205: 106290-106290 被引量:28
标识
DOI:10.1016/j.knosys.2020.106290
摘要

This paper focuses on the problem of student knowledge diagnosis that is a basic task of realizing personalized education. Most traditional methods rely on the question-concept matrix empirically designed by experts. However, the expert concepts are expensive and inter-overlapping in their constructions, leading to ambiguous explanations. With the intuition that each student can master a part of the knowledge involved in all questions, in this paper, we propose a novel learning-based model for student knowledge diagnosis, dubbed Meta-knowledge Dictionary Learning (metaDL). MetaDL aims to learn a meta-knowledge dictionary from student responses, where any knowledge entity (e.g., student, question or expert concept) is a linear combination of a few atoms in the meta-knowledge dictionary. The resultant problem could be effectively solved by developing the alternating direction method of multipliers. This study has three innovations: learning independent meta-knowledges instead of traditional complex concepts, sparely representing knowledge entity instead of densely weighted representation, and interpreting expert concepts with the resulting meta-knowledges. For evaluation, the diagnosis results from metaDL are used to group students and predict responses on two public datasets and a private dataset from our institution. The experiment results show that metaDL delivers an effective student knowledge diagnosis and then results in good performances on the two applications in comparison with other methods. This technique could provide significant insights into student’s knowledge state and facilitate the progress on personalized education.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助专注寻菱采纳,获得10
2秒前
胡质斌完成签到,获得积分10
2秒前
七薇完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
和平使命应助科研通管家采纳,获得20
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
5秒前
cc完成签到 ,获得积分10
5秒前
Yasong完成签到 ,获得积分10
6秒前
6秒前
科研通AI2S应助某某采纳,获得10
6秒前
研友_ZzrWKZ完成签到 ,获得积分10
9秒前
端庄代荷完成签到 ,获得积分10
12秒前
专注寻菱发布了新的文献求助10
12秒前
luobo123完成签到 ,获得积分10
14秒前
ESC惠子子子子子完成签到 ,获得积分10
14秒前
舒服的月饼完成签到 ,获得积分10
15秒前
拼搏的亦玉完成签到,获得积分10
16秒前
鲤鱼完成签到,获得积分10
20秒前
清爽的火车完成签到 ,获得积分10
21秒前
23秒前
23秒前
量子星尘发布了新的文献求助20
24秒前
26秒前
摔得你发布了新的文献求助10
28秒前
qiancib202完成签到,获得积分0
29秒前
LIFE2020完成签到 ,获得积分10
34秒前
heavenhorse应助zhfliang采纳,获得200
35秒前
39秒前
穆奕完成签到 ,获得积分10
41秒前
恋风阁完成签到 ,获得积分10
43秒前
小乙猪完成签到 ,获得积分0
43秒前
量子星尘发布了新的文献求助10
45秒前
摔得你完成签到,获得积分10
46秒前
wsws2105完成签到,获得积分10
47秒前
轻松的水壶完成签到 ,获得积分10
49秒前
Kevin完成签到 ,获得积分10
49秒前
爆米花应助务实的听筠采纳,获得10
56秒前
Fingerprints完成签到 ,获得积分10
58秒前
四叶草完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438814
求助须知:如何正确求助?哪些是违规求助? 4549889
关于积分的说明 14221180
捐赠科研通 4470896
什么是DOI,文献DOI怎么找? 2450081
邀请新用户注册赠送积分活动 1441018
关于科研通互助平台的介绍 1417557